1
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
2
|
Sassi A, You L. Microfluidics-Based Technologies for the Assessment of Castration-Resistant Prostate Cancer. Cells 2024; 13:575. [PMID: 38607014 PMCID: PMC11011521 DOI: 10.3390/cells13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Castration-resistant prostate cancer remains a significant clinical challenge, wherein patients display no response to existing hormone therapies. The standard of care often includes aggressive treatment options using chemotherapy, radiation therapy and various drugs to curb the growth of additional metastases. As such, there is a dire need for the development of innovative technologies for both its diagnosis and its management. Traditionally, scientific exploration of prostate cancer and its treatment options has been heavily reliant on animal models and two-dimensional (2D) in vitro technologies. However, both laboratory tools often fail to recapitulate the dynamic tumor microenvironment, which can lead to discrepancies in drug efficacy and side effects in a clinical setting. In light of the limitations of traditional animal models and 2D in vitro technologies, the emergence of microfluidics as a tool for prostate cancer research shows tremendous promise. Namely, microfluidics-based technologies have emerged as powerful tools for assessing prostate cancer cells, isolating circulating tumor cells, and examining their behaviour using tumor-on-a-chip models. As such, this review aims to highlight recent advancements in microfluidics-based technologies for the assessment of castration-resistant prostate cancer and its potential to advance current understanding and to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 2V9, Canada
| |
Collapse
|
3
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Hu S, Liu T, Xue C, Li Y, Yang Y, Xu X, Liu B, Chen X, Zhao Y, Qin K. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4813-4821. [PMID: 36382629 DOI: 10.1039/d2ay01416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mechanical properties of single cells have been recognized as biomarkers for identifying individual cells and diagnosing human diseases. Microfluidic devices based on the flow cytometry principle, which are not limited by the vision field of a microscope and can achieve a very high throughput, have been extensively adopted to measure the mechanical properties of single cells. However, these kinds of microfluidic devices usually required pressure-driven pumps with a very low flow rate and high precision. In this study, we developed a high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. The microfluidic analogue of the Wheatstone bridge not only took advantage of flow cytometry, but also allowed precise control of a very low flow rate through the constricted channel with a higher input flow rate generated by a commercially available pressure-driven pump. Under different input flow rates of the pump, the apparent elastic moduli and the fluidity of osteosarcoma (U-2OS) cells and cervical carcinoma (HeLa) cells were measured by monitoring their dynamic deformations passing through the bridge-channel with different sizes of rectangular constrictions. The results showed that the input flow rate had little effect on measuring the mechanical properties of the cells, while the ratio of cell radius to effective constriction radius was different, i.e., for U-2OS cells it was 1.20 and for HeLa cells it was 1.09. Under this condition compared with predecessors, our statistic results of cell mechanical properties exhibited minimal errors. Furthermore, the cell viability after measurements was kept above 90% that demonstrated the non-destructive property of our proposed method.
Collapse
Affiliation(s)
- Siyu Hu
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Tianmian Liu
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Chundong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yongjiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yunong Yang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Xing Xu
- Department of Endoscopy, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning Province, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| | - Xiaoming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Yan Zhao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, Liaoning Province, China
| | - Kairong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| |
Collapse
|
5
|
Molter CW, Muszynski EF, Tao Y, Trivedi T, Clouvel A, Ehrlicher AJ. Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner. Front Cell Dev Biol 2022; 10:932510. [PMID: 36200037 PMCID: PMC9527313 DOI: 10.3389/fcell.2022.932510] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.
Collapse
Affiliation(s)
- Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Eliana F. Muszynski
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Neuroscience, McGill University, Montreal, QC, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Tanisha Trivedi
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Bashir KMI, Lee S, Jung DH, Basu SK, Cho MG, Wierschem A. Narrow-Gap Rheometry: A Novel Method for Measuring Cell Mechanics. Cells 2022; 11:2010. [PMID: 35805094 PMCID: PMC9265971 DOI: 10.3390/cells11132010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
The viscoelastic properties of a cell cytoskeleton contain abundant information about the state of a cell. Cells show a response to a specific environment or an administered drug through changes in their viscoelastic properties. Studies of single cells have shown that chemical agents that interact with the cytoskeleton can alter mechanical cell properties and suppress mitosis. This envisions using rheological measurements as a non-specific tool for drug development, the pharmacological screening of new drug agents, and to optimize dosage. Although there exists a number of sophisticated methods for studying mechanical properties of single cells, studying concentration dependencies is difficult and cumbersome with these methods: large cell-to-cell variations demand high repetition rates to obtain statistically significant data. Furthermore, method-induced changes in the cell mechanics cannot be excluded when working in a nonlinear viscoelastic range. To address these issues, we not only compared narrow-gap rheometry with commonly used single cell techniques, such as atomic force microscopy and microfluidic-based approaches, but we also compared existing cell monolayer studies used to estimate cell mechanical properties. This review provides insight for whether and how narrow-gap rheometer could be used as an efficient drug screening tool, which could further improve our current understanding of the mechanical issues present in the treatment of human diseases.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
| | - Suhyang Lee
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Dong Hee Jung
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea
| | - Santanu Kumar Basu
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Man-Gi Cho
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Division of Energy and Bioengineering, Dongseo University, Busan 47011, Korea
| | - Andreas Wierschem
- German Engineering Research and Development Center, LSTME-Busan Branch, Busan 46742, Korea; (K.M.I.B.); (S.L.); (D.H.J.); (M.-G.C.)
- Institute of Fluid Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| |
Collapse
|
7
|
Zhang X, Karim M, Hasan MM, Hooper J, Wahab R, Roy S, Al-Hilal TA. Cancer-on-a-Chip: Models for Studying Metastasis. Cancers (Basel) 2022; 14:648. [PMID: 35158914 PMCID: PMC8833392 DOI: 10.3390/cancers14030648] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The microfluidic-based cancer-on-a-chip models work as a powerful tool to study the tumor microenvironment and its role in metastasis. The models recapitulate and systematically simplify the in vitro tumor microenvironment. This enables the study of a metastatic process in unprecedented detail. This review examines the development of cancer-on-a-chip microfluidic platforms at the invasion/intravasation, extravasation, and angiogenesis steps over the last three years. The on-chip modeling of mechanical cues involved in the metastasis cascade are also discussed. Finally, the popular design of microfluidic chip models for each step are discussed along with the challenges and perspectives of cancer-on-a-chip models.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
| | - Mazharul Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jacob Hooper
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
| | - Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
| | - Sourav Roy
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Taslim A. Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; (X.Z.); (M.K.); (M.M.H.); (R.W.)
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA; (J.H.); (S.R.)
- Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
8
|
Huang K, Liu J, Chen Q, Feng D, Wu H, Aldanakh A, Jian Y, Xu Z, Wang S, Yang D. The effect of mechanical force in genitourinary malignancies. Expert Rev Anticancer Ther 2021; 22:53-64. [PMID: 34726963 DOI: 10.1080/14737140.2022.2000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mechanical force is attributed to the formation of tumor blood vessels, influences cancer cell invasion and metastasis, and promotes reprogramming of the energy metabolism. Currently, therapy strategies for the tumor microenvironment are being developed progressively. The purpose of this article is to discuss the molecular mechanism, diagnosis, and treatment of mechanical force in urinary tract cancers and outline the medications used in the mechanical microenvironment. AREAS COVERED This review covers the complex mechanical elements in the microenvironment of urinary system malignancies, focusing on mechanical molecular mechanisms for diagnosis and treatment. EXPERT OPINION The classification of various mechanical forces, such as matrix stiffness, shear force, and other forces, is relatively straightforward. However, little is known about the molecular process of mechanical forces in urinary tract malignancies. Because mechanical therapy is still controversial, it is critical to understand the molecular basis of mechanical force before adding mechanical therapy solutions.
Collapse
Affiliation(s)
- Kai Huang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Junqiang Liu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Chen
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China.,School of Information Science and Technology, Dalian Maritime University, Dalian City, China
| | - Dan Feng
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuli Jian
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Microfluidic Assessment of Drug Effects on Physical Properties of Androgen Sensitive and Non-Sensitive Prostate Cancer Cells. MICROMACHINES 2021; 12:mi12050532. [PMID: 34067167 PMCID: PMC8151345 DOI: 10.3390/mi12050532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability cytometry was employed to assess the effects of two anti-cancer drugs, docetaxel and enzalutamide, on androgen-sensitive prostate cancer cells (LNCaP) and androgen-independent prostate cancer cells (PC-3), respectively. The quantified results show that PC-3 and LNCaP present not only different intrinsic physical properties but also different physical responses to the same anti-cancer drug. PC-3 cells possess greater stiffness and a smaller size than LNCaP cells. As the docetaxel concentration increases, PC-3 cells present an increase in stiffness and size, but LNCaP cells only present an increase in stiffness. As the enzalutamide concentration increases, PC-3 cells present no physical changes but LNCaP cells present changes in both cell size and deformation. These results demonstrated that cellular physical properties quantified by the deformability cytometry are effective indicators for identifying the androgen-independent prostate cancer cells from androgen-sensitive prostate cancer cells and evaluating drug effects on these two types of prostate cancer.
Collapse
|
10
|
Belotti Y, Lim CT. Microfluidics for Liquid Biopsies: Recent Advances, Current Challenges, and Future Directions. Anal Chem 2021; 93:4727-4738. [DOI: 10.1021/acs.analchem.1c00410] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuri Belotti
- Institute for Health Innovation and Technology, National University of Singapore, 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology, National University of Singapore, 117599 Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| |
Collapse
|
11
|
Sariisik E, Zistl D, Docheva D, Schilling AF, Benoit M, Sudhop S, Clausen-Schaumann H. Inadequate tissue mineralization promotes cancer cell attachment. PLoS One 2020; 15:e0237116. [PMID: 32857787 PMCID: PMC7454967 DOI: 10.1371/journal.pone.0237116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
Bone metastases are a frequent complication in prostate cancer, and several studies have shown that vitamin D deficiency promotes bone metastases. However, while many studies focus on vitamin D’s role in cell metabolism, the effect of chronically low vitamin D levels on bone tissue, i.e. insufficient mineralization of the tissue, has largely been ignored. To investigate, whether poor tissue mineralization promotes cancer cell attachment, we used a fluorescence based adhesion assay and single cell force spectroscopy to quantify the adhesion of two prostate cancer cell lines to well-mineralized and demineralized dentin, serving as biomimetic bone model system. Adhesion rates of bone metastases-derived PC3 cells increased significantly on demineralized dentin. Additionally, on mineralized dentin, PC3 cells adhered mainly via membrane anchored surface receptors, while on demineralized dentin, they adhered via cytoskeleton-anchored transmembrane receptors, pointing to an interaction via exposed collagen fibrils. The adhesion rate of lymph node derived LNCaP cells on the other hand is significantly lower than that of PC3 and not predominately mediated by cytoskeleton-linked receptors. This indicates that poor tissue mineralization facilitates the adhesion of invasive cancer cells by the exposure of collagen and emphasizes the disease modifying effect of sufficient vitamin D for cancer patients.
Collapse
Affiliation(s)
- Ediz Sariisik
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Chair of Applied Physics, Ludwig-Maximilians-Universität, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Domenik Zistl
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
| | - Denitsa Docheva
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Department of Trauma Surgery, Experimental Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Arndt F. Schilling
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Clinic for Trauma Surgery, Orthopaedics, and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Benoit
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Chair of Applied Physics, Ludwig-Maximilians-Universität, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
12
|
Simultaneously Quantifying Both Young's Modulus and Specific Membrane Capacitance of Bladder Cancer Cells with Different Metastatic Potential. MICROMACHINES 2020; 11:mi11030249. [PMID: 32120859 PMCID: PMC7143764 DOI: 10.3390/mi11030249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Both Young's modulus and specific membrane capacitance (SMC) are two important physical parameters for characterizing cell status. In this paper, we utilized a thin-neck-micropipette aspiration system to simultaneously quantify Young's modulus and SMC value of six types of cell lines in different progression grades, which include four grades from the lowest metastatic potential G1 to the highest potential G4. We investigated how these two physical properties possess heterogeneities in bladder cancer cells with different grades and what roles they might play in grading bladder cancer. The characterization results of these cells of different cancer grades is linearly correlated with the cancer grades, showing that the Young's modulus is negatively linearly correlated with bladder cancer grades, while SMC shows a positive linear correlation. Furthermore, the combination of these two physical properties on a scatter diagram clearly shows the cell groups with different cancer grades, which means that this combination could be a potential tumor grading marker to identify cancer cells with different metastatic potential.
Collapse
|
13
|
On-Chip Construction of Multilayered Hydrogel Microtubes for Engineered Vascular-Like Microstructures. MICROMACHINES 2019; 10:mi10120840. [PMID: 31805688 PMCID: PMC6953073 DOI: 10.3390/mi10120840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/30/2022]
Abstract
Multilayered and multicellular structures are indispensable for constructing functional artificial tissues. Engineered vascular-like microstructures with multiple layers are promising structures to be functionalized as artificial blood vessels. In this paper, we present an efficient method to construct multilayer microtubes embedding different microstructures based on direct fabrication and assembly inside a microfluidic device. This four-layer microfluidic device has two separate inlets for fabricating various microstructures. We have achieved alternating-layered microtubes by controlling the fabrication, flow, and assembly time of each microstructure, and as well, double-layered microtubes have been built by a two-step assembly method. Modifications of both the inner and outer layers was successfully demonstrated, and the flow conditions during the on-chip assembly were evaluated and optimized. Each microtube was successfully constructed within several minutes, showing the potential applications of the presented method for building engineered vascular-like microstructures with high efficiency.
Collapse
|