1
|
Sang S, Li L, Li Q, Ding L, Li X, Chang Z, Chen Y, Ullan R, Ma J, Ji J. A high-performance organic thin-film transistor with Parylene/PMMA bilayer insulation based on P3HT. iScience 2024; 27:109724. [PMID: 38711457 PMCID: PMC11070672 DOI: 10.1016/j.isci.2024.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
This work introduces a pioneering approach in the development of organic thin-film transistors (OTFTs), featuring a double-layer dielectric structure that combines poly(para-xylylene)s (Parylene) and poly(methyl methacrylate) (PMMA) to leverage the high insulation properties and high surface polarity of Parylene with the low insulation properties and low surface polarity of PMMA. This combination results in devices that showcase significantly enhanced electrical performance, including superior charge carrier mobility, increased current on/off ratios, and greater transconductance. Utilizing poly(3-hexylthiophene) (P3HT) for the active layer, the study demonstrates the advantage of the dual dielectric layers in minimizing hysteresis in the transfer curve, thereby facilitating the systematic growth of the organic active layer and enhancing electrical conductivity over single-layer alternatives. The superior performance of the Parylene/PMMA double-layer insulating structure opens new avenues for the advancement of organic electronics, presenting methodologies for performance optimization and expanding the application spectrum of OTFTs.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leilei Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lifeng Ding
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Xinwang Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhiqing Chang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yimin Chen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Raza Ullan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianan Ma
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianlong Ji
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Ma Z, Li J, Zhang Y, Zhao H, Li Q, Ma C, Yao J. Enhanced detectivity of PbS quantum dots infrared photodetector by introducing the tunneling effect of PMMA. NANOTECHNOLOGY 2021; 32:195502. [PMID: 33212428 DOI: 10.1088/1361-6528/abcc20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With extremely high optical absorption coefficient in infrared regime, lead sulfide (PbS) quantum dots (QDs)-based photodetectors are promising for diverse applications. In recent years, synthesis of materials has made great progress, but the problem of low sensitivity of quantum dots photodetector still unresolved. In this work, the introduction of a tunneling organic layer effectively address this problem. The dark current is decreased by the appropriate thickness of polymethyl methacrylate (PMMA) barrier layer by suppressing the spontaneous migration of ions, and the photogenerated carriers are little effected, thereby the responsivity of the device is improved. As a result, the device exhibits a high responsivity of 3.73 × 105 mA W-1 and a giant specific detectivity of 4.01 × 1013 Jones at a low voltage of -1 V under 1064 nm illumination. In the self-powered mode, the responsivity reaches a value of 157.6 mA W-1, and the detectivity up to 5.9 × 1011 Jones. The performance of the photodetectors is obviously better than most of the reported QDs photodetectors. The design of this device structure provides a new solution to the problem of low sensitivity and high leakage current of quantum dots based infrared photodetectors.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiahui Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yating Zhang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongliang Zhao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qingyan Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chengqi Ma
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
3
|
Gutiérrez-Fernández E, Ezquerra TA, Nogales A, Rebollar E. Straightforward Patterning of Functional Polymers by Sequential Nanosecond Pulsed Laser Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1123. [PMID: 33925285 PMCID: PMC8146350 DOI: 10.3390/nano11051123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022]
Abstract
Laser-based methods have demonstrated to be effective in the fabrication of surface micro- and nanostructures, which have a wide range of applications, such as cell culture, sensors or controlled wettability. One laser-based technique used for micro- and nanostructuring of surfaces is the formation of laser-induced periodic surface structures (LIPSS). LIPSS are formed upon repetitive irradiation at fluences well below the ablation threshold and in particular, linear structures are formed in the case of irradiation with linearly polarized laser beams. In this work, we report on the simple fabrication of a library of ordered nanostructures in a polymer surface by repeated irradiation using a nanosecond pulsed laser operating in the UV and visible region in order to obtain nanoscale-controlled functionality. By using a combination of pulses at different wavelengths and sequential irradiation with different polarization orientations, it is possible to obtain different geometries of nanostructures, in particular linear gratings, grids and arrays of nanodots. We use this experimental approach to nanostructure the semiconductor polymer poly(3-hexylthiophene) (P3HT) and the ferroelectric copolymer poly[(vinylidenefluoride-co-trifluoroethylene] (P(VDF-TrFE)) since nanogratings in semiconductor polymers, such as P3HT and nanodots, in ferroelectric systems are viewed as systems with potential applications in organic photovoltaics or non-volatile memories.
Collapse
Affiliation(s)
- Edgar Gutiérrez-Fernández
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain; (E.G.-F.); (T.A.E.); (A.N.)
| | - Tiberio A. Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain; (E.G.-F.); (T.A.E.); (A.N.)
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain; (E.G.-F.); (T.A.E.); (A.N.)
| | - Esther Rebollar
- Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|