1
|
Lai BJ, Zhu LT, Chen Z, Ouyang B, Luo ZH. Review on Blood Flow Dynamics in Lab-on-a-Chip Systems: An Engineering Perspective. CHEM & BIO ENGINEERING 2024; 1:26-43. [PMID: 39973974 PMCID: PMC11835182 DOI: 10.1021/cbe.3c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 02/21/2025]
Abstract
Under different transport mechanisms, blood flow dynamics, heavily linked to the flow shear rate conditions, in "lab-on-a-chip" (LOC) systems are found to result in varying transport phenomena. This Review examines the blood flow patterns in LOC systems through the role of viscoelastic properties such as dynamic blood viscosity and elastic behavior of the red blood cells. The study of blood transport phenomena in LOC systems through key parameters of capillary and electro-osmotic forces is provided through experimental, theoretical, and numerous numerical approaches. The disturbance triggered by electro-osmotic viscoelastic flow is particularly discussed and applied in the enhancement of the mixing and separating capabilities of LOC devices handling blood and other viscoelastic fluids for future research opportunities. Furthermore, the Review identifies the challenges in the numerical modeling of blood flow dynamics under the LOC systems, such as the call for more accurate and simplified blood flow models and the emphasis on numerical studies of viscoelastic fluid flow under the electrokinetic effect. More practical assumptions for zeta potential conditions while studying the electrokinetic phenomena are also highlighted. This Review aims to provide a comprehensive and interdisciplinary perspective on blood flow dynamics in microfluidic systems driven by capillary and electro-osmotic forces.
Collapse
Affiliation(s)
- Bin-Jie Lai
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao
Tong University, Shanghai 200240, P. R. China
| | - Li-Tao Zhu
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao
Tong University, Shanghai 200240, P. R. China
| | - Zhe Chen
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao
Tong University, Shanghai 200240, P. R. China
| | - Bo Ouyang
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao
Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao
Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Bentor J, Xuan X. Particle Size-Dependent Electrophoresis in Polymer Solutions. Anal Chem 2024. [PMID: 38321932 DOI: 10.1021/acs.analchem.3c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
It has long been known that the electrophoretic velocity of a charged particle is independent of its size under the thin-Debye-layer limit. This so-called Smoluchowski velocity is, however, valid only for Newtonian fluids. A couple of recent theoretical studies predict the rheology-induced particle size dependence of electrophoresis in non-Newtonian fluids. This work presents the first experimental demonstration of such dependence in viscoelastic poly(ethylene oxide) (PEO) solutions. Three different-sized particles are observed to travel at the same electrophoretic velocity in a Newtonian buffer through a rectangular microchannel. In contrast, their measured electrophoretic velocities in the PEO solution exhibit an increasing trend for larger particles, which is consistent with theoretical prediction. This particle size dependence is found to grow with an increasing concentration or length of the PEO polymer. Both trends are attributed to enhanced fluid elasticity, as characterized by the increasing elasticity number.
Collapse
Affiliation(s)
- Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
3
|
Ion transport and current rectification in a charged conical nanopore filled with viscoelastic fluids. Sci Rep 2022; 12:2547. [PMID: 35169151 PMCID: PMC8847403 DOI: 10.1038/s41598-022-06079-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
The ionic current rectification (ICR) is a non-linear current-voltage response upon switching the polarity of the potential across nanopore which is similar to the I–V response in the semiconductor diode. The ICR phenomenon finds several potential applications in micro/nano-fluidics (e.g., Bio-sensors and Lab-on-Chip applications). From a biological application viewpoint, most biological fluids (e.g., blood, saliva, mucus, etc.) exhibit non-Newtonian visco-elastic behavior; their rheological properties differ from Newtonian fluids. Therefore, the resultant flow-field should show an additional dependence on the rheological material properties of viscoelastic fluids such as fluid relaxation time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\lambda )$$\end{document}(λ) and fluid extensibility \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\varepsilon )$$\end{document}(ε). Despite numerous potential applications, the comprehensive investigation of the viscoelastic behavior of the fluid on ionic concentration profile and ICR phenomena has not been attempted. ICR phenomena occur when the length scale and Debye layer thickness approaches to the same order. Therefore, this work extensively investigates the effect of visco-elasticity on the flow and ionic mass transfer along with the ICR phenomena in a single conical nanopore. The Poisson–Nernst–Planck (P–N–P) model coupled with momentum equations have been solved for a wide range of conditions such as, Deborah number, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\le De \le 100$$\end{document}1≤De≤100, Debye length parameter, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\le \kappa R_t \le 50$$\end{document}1≤κRt≤50, fluid extensibility parameter, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.05\le \varepsilon \le 0.25$$\end{document}0.05≤ε≤0.25, applied electric potential, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-40\le V \le 40$$\end{document}-40≤V≤40, and surface charge density \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma = -10$$\end{document}σ=-10 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-50$$\end{document}-50. Limited results for Newtonian fluid (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$De = 0$$\end{document}De=0, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon = 0$$\end{document}ε=0) have also been shown in order to demonstrate the effectiveness of non-Newtonian fluid behaviour over the Newtonian fluid behaviour. Four distinct novel characteristics of electro-osmotic flow (EOF) in a conical nanopore have been investigated here, namely (1) detailed structure of flow field and velocity distribution in viscoelastic fluids (2) influence of Deborah number and fluid extensibility parameter on ionic current rectification (ICR) (3) volumetric flow rate calculation as a function of Deborah number and fluid extensibility parameter (4) effect of viscoelastic parameters on concentration distribution of ions in the nanopore. At high applied voltage, both the extensibility parameter and Deborah number facilitate the ICR phenomena. In addition, the ICR phenomena are observed to be more pronounced at low values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\kappa R_t$$\end{document}κRt than the high values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\kappa R_t$$\end{document}κRt. This effect is due to the overlapping of the electric double layer at low values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\kappa R_t$$\end{document}κRt.
Collapse
|
4
|
Bentor J, Raihan MK, McNeely C, Liu Z, Song Y, Xuan X. Fluid rheological effects on streaming dielectrophoresis in a post-array microchannel. Electrophoresis 2021; 43:717-723. [PMID: 34657307 DOI: 10.1002/elps.202100270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022]
Abstract
Recent studies have demonstrated the strong influences of fluid rheological properties on insulator-based dielectrophoresis (iDEP) in single-constriction microchannels. However, it is yet to be understood how iDEP in non-Newtonian fluids depends on the geometry of insulating structures. We report in this work an experimental study of fluid rheological effects on streaming DEP in a post-array microchannel that presents multiple contractions and expansions. The iDEP focusing and trapping of particles in a viscoelastic polyethylene oxide solution are comparable to those in a Newtonian buffer, which is consistent with the observations in a single-constriction microchannel. Similarly, the insignificant iDEP effects in a shear-thinning xanthan gum solution also agree with those in the single-constriction channel except that gel-like structures are observed to only form in the post-array microchannel under large DC electric fields. In contrast, the iDEP effects in both viscoelastic and shear-thinning polyacrylamide solution are significantly weaker than in the single-constriction channel. Moreover, instabilities occur in the electroosmotic flow and appear to be only dependent on the DC electric field. These phenomena may be associated with the dynamics of polymers as they are electrokinetically advected around and through the posts.
Collapse
Affiliation(s)
- Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| | - Mahmud Kamal Raihan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| | - Colin McNeely
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| | - Zhijian Liu
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA.,College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
5
|
A Hierarchical Grid Solver for Simulation of Flows of Complex Fluids. Polymers (Basel) 2021; 13:polym13183168. [PMID: 34578066 PMCID: PMC8471049 DOI: 10.3390/polym13183168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Tree-based grids bring the advantage of using fast Cartesian discretizations, such as finite differences, and the flexibility and accuracy of local mesh refinement. The main challenge is how to adapt the discretization stencil near the interfaces between grid elements of different sizes, which is usually solved by local high-order geometrical interpolations. Most methods usually avoid this by limiting the mesh configuration (usually to graded quadtree/octree grids), reducing the number of cases to be treated locally. In this work, we employ a moving least squares meshless interpolation technique, allowing for more complex mesh configurations, still keeping the overall order of accuracy. This technique was implemented in the HiG-Flow code to simulate Newtonian, generalized Newtonian and viscoelastic fluids flows. Numerical tests and application to viscoelastic fluid flow simulations were performed to illustrate the flexibility and robustness of this new approach.
Collapse
|
6
|
Bentor J, Malekanfard A, Raihan MK, Wu S, Pan X, Song Y, Xuan X. Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids. Electrophoresis 2021; 42:2154-2161. [PMID: 33938011 DOI: 10.1002/elps.202100005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/17/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.
Collapse
Affiliation(s)
- Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| | | | | | - Sen Wu
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA.,College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Xinxiang Pan
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China.,College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
7
|
Influence of Non-Structural Parameters on Dual Parallel Jet Characteristics of Porous Nozzles. MICROMACHINES 2020; 11:mi11080772. [PMID: 32823817 PMCID: PMC7465785 DOI: 10.3390/mi11080772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023]
Abstract
As an important actuator of the dual parallel jet, the porous nozzle has some non-structural parameters (such as inlet pressure, nozzle spacing ratio, etc.) which have a significant influence on energy transport, chemical combustion and pollutant generation. The research on the microfluidic state of the porous nozzle dual parallel jet, however, remains insufficient because of its microjet pattern and complex intersection process. In this paper, the authors used numerical simulation and an experimental method to clarify the influence of porous nozzles’ non-structural parameters on dual parallel jet characteristics. The results show that the inlet pressure only changes the pressure peak value on the parallel jet axis; the starting point (SP) and peak point (PP) on the parallel jet axis, which are located at Xsp = 22 mm and Xpp = 75 mm, respectively, are not changed; and with the increase in the nozzle spacing ratio, the merging points (MPs) on the parallel jet axis are Xmp = 25 mm, 32 mm and 59 mm, respectively. The merging point and the combined point move to a farther distance and the inner deflection angle of the jet is weakened.
Collapse
|