1
|
Qian H, McLamore E, Bliznyuk N. Machine Learning for Improved Detection of Pathogenic E. coli in Hydroponic Irrigation Water Using Impedimetric Aptasensors: A Comparative Study. ACS OMEGA 2023; 8:34171-34179. [PMID: 37744804 PMCID: PMC10515366 DOI: 10.1021/acsomega.3c05797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Reuse of alternative water sources for irrigation (e.g., untreated surface water) is a sustainable approach that has the potential to reduce water gaps, while increasing food production. However, when growing fresh produce, this practice increases the risk of bacterial contamination. Thus, rapid and accurate identification of pathogenic organisms such as Shiga-toxin producing Escherichia coli (STEC) is crucial for resource management when using alternative water(s). Although many biosensors exist for monitoring pathogens in food systems, there is an urgent need for data analysis methodologies that can be applied to accurately predict bacteria concentrations in complex matrices such as untreated surface water. In this work, we applied an impedimetric electrochemical aptasensor based on gold interdigitated electrodes for measuring E. coliO157:H7 in surface water for hydroponic lettuce irrigation. We developed a statistical machine-learning (SML) framework for assessing different existing SML methods to predict the E. coliO157:H7 concentration. In this study, three classes of statistical models were evaluated for optimizing prediction accuracy. The SML framework developed here facilitates selection of the most appropriate analytical approach for a given application. In the case of E. coliO157:H7 prediction in untreated surface water, selection of the optimum SML technique led to a reduction of test set RMSE by at least 20% when compared with the classic analytical technique. The statistical framework and code (open source) include a portfolio of SML models, an approach which can be used by other researchers using electrochemical biosensors to measure pathogens in hydroponic irrigation water for rapid decision support.
Collapse
Affiliation(s)
- Hanyu Qian
- Department
of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Eric McLamore
- Department
of Agricultural Sciences, College of Agriculture, Forestry and Life
Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Nikolay Bliznyuk
- Department
of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States
- Departments
of Statistics, Biostatistics and Electrical & Computer Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Akh L, Jung D, Frantz W, Bowman C, Neu AC, Ding X. Microfluidic pumps for cell sorting. BIOMICROFLUIDICS 2023; 17:051502. [PMID: 37736018 PMCID: PMC10511263 DOI: 10.1063/5.0161223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Microfluidic cell sorting has shown promising advantages over traditional bulky cell sorting equipment and has demonstrated wide-reaching applications in biological research and medical diagnostics. The most important characteristics of a microfluidic cell sorter are its throughput, ease of use, and integration of peripheral equipment onto the chip itself. In this review, we discuss the six most common methods for pumping fluid samples in microfluidic cell sorting devices, present their advantages and drawbacks, and discuss notable examples of their use. Syringe pumps are the most commonly used method for fluid actuation in microfluidic devices because they are easily accessible but they are typically too bulky for portable applications, and they may produce unfavorable flow characteristics. Peristaltic pumps, both on- and off-chip, can produce reversible flow but they suffer from pulsatile flow characteristics, which may not be preferable in many scenarios. Gravity-driven pumping, and similarly hydrostatic pumping, require no energy input but generally produce low throughputs. Centrifugal flow is used to sort cells on the basis of size or density but requires a large external rotor to produce centrifugal force. Electroosmotic pumping is appealing because of its compact size but the high voltages required for fluid flow may be incompatible with live cells. Emerging methods with potential for applications in cell sorting are also discussed. In the future, microfluidic cell sorting methods will trend toward highly integrated systems with high throughputs and low sample volume requirements.
Collapse
Affiliation(s)
- Leyla Akh
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
| | - Diane Jung
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
| | - William Frantz
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
| | - Corrin Bowman
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, USA
| | - Anika C. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Xiaoyun Ding
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Novel Approaches Concerning the Numerical Modeling of Particle and Cell Separation in Microchannels: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10061226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The demand for precise separation of particles, cells, and other biological matter has significantly increased in recent years, leading to heightened scientific interest in this topic. More recently, due to advances in computational techniques and hardware, numerical simulations have been used to guide the design of separation devices. In this article, we establish the theoretical basis governing fluid flow and particle separation and then summarize the computational work performed in the field of particle and cell separation in the last five years with an emphasis on magnetic, dielectric, and acoustic methods. Nearly 70 articles are being reviewed and categorized depending on the type of material separated, fluid medium, software used, and experimental validation, with a brief description of some of the most notable results. Finally, further conclusions, future guidelines, and suggestions for potential improvement are highlighted.
Collapse
|
4
|
Ezenarro JJ, Mas J, Muñoz-Berbel X, Uria N. Advances in bacterial concentration methods and their integration in portable detection platforms: A review. Anal Chim Acta 2022; 1209:339079. [PMID: 35569858 DOI: 10.1016/j.aca.2021.339079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Early detection and identification of microbial contaminants is crucial in many sectors, including clinical diagnostics, food quality control and environmental monitoring. Biosensors have recently gained attention among other bacterial detection technologies due to their simplicity, rapid response, selectivity, and integration/miniaturization potential in portable microfluidic platforms. However, biosensors are limited to the analysis of small sample volumes, and pre-concentration steps are necessary to reach the low sensitivity levels of few bacteria per mL required in the analysis of real clinical, industrial or environmental samples. Many platforms already exist where bacterial detection and separation/accumulation systems are integrated in a single platform, but they have not been compiled and critically analysed. This review reports on most recent advances in bacterial concentration/detection platforms with emphasis on the concentration strategy. Systems based on five concentration strategies, i.e. centrifugation, filtration, magnetic separation, electric separation or acoustophoresis, are here presented and compared in terms of processed sample volume, concentration efficiency, concentration time, ability to work with different types of samples, and integration potential, among others. The critical evaluation presented in the review is envision to facilitate the development of future platforms for fast, sensitive and in situ bacterial detection in real sample.
Collapse
Affiliation(s)
- Josune J Ezenarro
- Departament de Genètica I de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain; Waterologies S.L, C/ Dinamarca, 3 (nave 9), Polígono Industrial Les Comes, 08700, Igualada, Spain; Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, 08193, Bellaterra, Spain.
| | - Jordi Mas
- Departament de Genètica I de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola Del Vallès, Spain
| | - Xavier Muñoz-Berbel
- Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Naroa Uria
- Institut de Microelectrònica de Barcelona, IMB-CNM-CSIC, Campus UAB, 08193, Bellaterra, Spain; Arkyne Tehcnologies S.L (Bioo), Carrer de La Tecnologia, 17, 08840, Viladecans, Spain.
| |
Collapse
|
5
|
Catalan-Carrio R, Saez J, Fernández Cuadrado LÁ, Arana G, Basabe-Desmonts L, Benito-Lopez F. Ionogel-based hybrid polymer-paper handheld platform for nitrite and nitrate determination in water samples. Anal Chim Acta 2022; 1205:339753. [DOI: 10.1016/j.aca.2022.339753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/01/2022]
|
6
|
Abedini-Nassab R, Shourabi R. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection. Sci Rep 2022; 12:6380. [PMID: 35430583 PMCID: PMC9013386 DOI: 10.1038/s41598-022-10122-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Precise manipulation of microparticles have fundamental applications in the fields of lab-on-a-chip and biomedical engineering. Here, for the first time, we propose a fully operational microfluidic chip equipped with thin magnetic films composed of straight tracks and bends which precisely transports numerous single-particles in the size range of ~ 2.8–20 µm simultaneously, to certain points, synced with the general external three-axial magnetic field. The uniqueness of this design arises from the introduced vertical bias field that provides a repulsion force between the particles and prevents unwanted particle cluster formation, which is a challenge in devices operating in two-dimensional fields. Furthermore, the chip operates as an accurate sensor and detects low levels of proteins and DNA fragments, being captured by the ligand-functionalized magnetic beads, while lowering the background noise by excluding the unwanted bead pairs seen in the previous works. The image-processing detection method in this work allows detection at the single-pair resolution, increasing the sensitivity. The proposed device offers high-throughput particle transport and ultra-sensitive bio-detection in a highly parallel manner at single-particle resolution. It can also operate as a robust single-cell analysis platform for manipulating magnetized single-cells and assembling them in large arrays, with important applications in biology.
Collapse
|
7
|
Shanko ES, Ceelen L, Wang Y, van de Burgt Y, den Toonder J. Enhanced Microfluidic Sample Homogeneity and Improved Antibody-Based Assay Kinetics Due to Magnetic Mixing. ACS Sens 2021; 6:2553-2562. [PMID: 34191498 PMCID: PMC8457298 DOI: 10.1021/acssensors.1c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Recent global events have distinctly demonstrated the need for fast diagnostic analysis
of targets in a liquid sample. However, microfluidic lab-on-a-chip devices for
point-of-care diagnostics can suffer from slow analysis due to poor mixing. Here, we
experimentally explore the mixing effect within a microfluidic chamber, as obtained from
superparamagnetic beads exposed to an out-of-plane (vertical) rotating magnetic field.
Various magnetic protocols are explored, and the level of sample homogeneity is measured
by determining the mixing efficiency index. In particular, we introduce a method to
induce effective mixing in a microfluidic chamber by the actuation of the same beads to
perform global swarming behavior, a collective motion of a large number of individual
entities often seen in nature. The microparticle swarming induces high fluid velocities
in initially stagnant fluids, and it can be externally controlled. The method is
pilot-tested using a point-of-care test featuring a bioluminescent assay for the
detection of antibodies. The mixing by the magnetic beads leads to increased assay
kinetics, which indeed reduces the time to sensor readout substantially. Magnetic
microparticle swarming is expected to be beneficial for a wide variety of point-of-care
devices, where fast homogeneity of reagents does play a role.
Collapse
Affiliation(s)
- Eriola-Sophia Shanko
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Lennard Ceelen
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ye Wang
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Yoeri van de Burgt
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Jaap den Toonder
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| |
Collapse
|
8
|
Abstract
Magnetophoresis offers many advantages for manipulating magnetic targets in microsystems. The integration of micro-flux concentrators and micro-magnets allows achieving large field gradients and therefore large reachable magnetic forces. However, the associated fabrication techniques are often complex and costly, and besides, they put specific constraints on the geometries. Magnetic composite polymers provide a promising alternative in terms of simplicity and fabrication costs, and they open new perspectives for the microstructuring, design, and integration of magnetic functions. In this review, we propose a state of the art of research works implementing magnetic polymers to trap or sort magnetic micro-beads or magnetically labeled cells in microfluidic devices.
Collapse
|
9
|
Pohanka M. Biosensors and Bioanalytical Devices based on Magnetic Particles: A Review. Curr Med Chem 2021; 28:2828-2841. [PMID: 32744958 DOI: 10.2174/0929867327666200730213721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
Magnetic particles play an important role in current technology, and this field of technology extends to a broader progression. The term magnetic particles typically cover the paramagnetic particles and super-paramagnetic particles. Various materials like iron oxide are common, but other materials are available as well; a survey of such materials has been included in this work. They can serve for technological purposes like separation and isolation of chemical products or toxic waste, their use in the diagnosis of pathologies, drug delivery and other similar applications. In this review, biosensors, bioanalytical devices and bioassays, have been discussed. Materials for magnetic particles preparation, methods of assay, biosensors and bioassays working in stationary as well as flow-through arrangements are described here. A survey of actual literature has been provided as well.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
10
|
Xie Z, Pu H, Sun DW. Computer simulation of submicron fluid flows in microfluidic chips and their applications in food analysis. Compr Rev Food Sci Food Saf 2021; 20:3818-3837. [PMID: 34056852 DOI: 10.1111/1541-4337.12766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023]
Abstract
In recent years, countries around the world have maintained a zero-tolerance attitude toward safety problems in the food industry. In order to ensure human health, a fast, sensitive, and high-throughput analysis of food contaminants is necessary to ensure safe food products on the market. Microfluidics, as a high-efficiency and sensitive detection technology, has many advantages in the detection of food contaminants, including foodborne pathogens, pesticides, heavy metal ions, toxic substances, and so forth, especially in conjunction with a variety of submicron fluid driving methods, making food detection and analysis more efficient and accurate. This review introduces the principle of submicron fluid driving modes and discusses the driving simulation of submicron fluid in microfluidic chips. In addition, the latest developments in the application of simulation in food analysis from 2006 to 2020 are discussed, and the computer simulation of submicron fluid flow in microfluidic chips and its application and development trend in food analysis are also highlighted. The review indicates that microfluidic technology, using numerical simulation as an auxiliary tool, combined with traditional methods has greatly improved the detection and analysis of food products. In addition, microfluidics combined with a variety of control methods embodies the ability of specific, multifunctional, and sensitive detection and analysis of food products. The development of high-sensitivity, high-throughput, portable, integrated microfluidic chips will enable the technology to be applied in practice.
Collapse
Affiliation(s)
- Zhaoda Xie
- School of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology, School of Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
11
|
Abedini-Nassab R, Bahrami S. Synchronous control of magnetic particles and magnetized cells in a tri-axial magnetic field. LAB ON A CHIP 2021; 21:1998-2007. [PMID: 34008644 DOI: 10.1039/d1lc00097g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise manipulation of single particles is one of the main goals in the lab-on-a-chip field. Here, we present a microfluidic platform with "T" and "I" shaped magnetic tracks on the substrate to transport magnetic particles and magnetized cells in a tri-axial time-varying magnetic field. The driving magnetic field is composed of a vertical field bias and an in-plane rotating field component, with the advantage of lowering the attraction tendency and cluster formation between the particles compared to the traditional magnetophoretic circuits. We demonstrate three fundamental achievements. First, all the particle movements are synced with the external rotating field to achieve precise control over individual particles. Second, single-particle and single living cell transport in a controlled fashion is achieved for a large number of them in parallel, without the need for a complicated control system to send signals to individual particles. We carefully study the proposed design and introduce proper operating parameters. Finally, in addition to moving the particles along straight tracks, transporting them using a ∼60° bend is demonstrated. The proposed chip has direct applications in the fields of lab-on-a-chip, single-cell biology, and drug screening, where precise control over single particles is needed.
Collapse
Affiliation(s)
| | - Sajjad Bahrami
- Electrical Engineering Department, University of Neyshabur, Neyshabur, Iran
| |
Collapse
|
12
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
13
|
Pashchenko AV, Liedienov NA, Fesych IV, Li Q, Pitsyuga VG, Turchenko VA, Pogrebnyak VG, Liu B, Levchenko GG. Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Adv 2020; 10:30907-30916. [PMID: 35516065 PMCID: PMC9056338 DOI: 10.1039/d0ra06779b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
For many medical applications related to diagnosis and treatment of cancer disease, hyperthermia plays an increasingly important role as a local heating method, where precise control of temperature and parameters of the working material is strongly required. Obtaining a smart material with "self-controlled" heating in a desirable temperature range is a relevant task. For this purpose, the nanopowder of manganite perovskite with super-stoichiometric manganese has been synthesized, which consists of soft spherical-like ferromagnetic nanoparticles with an average size of 65 nm and with a narrow temperature range of the magnetic phase transition at 42 °C. Based on the analysis of experimental magnetic data, a specific loss power has been calculated for both quasi-stable and relaxation hysteresis regions. It has been shown that the local heating of the cell structures to 42 °C may occur for a short time (∼1.5 min.) Upon reaching 42 °C, the heating is stopped due to transition of the nanopowder to the paramagnetic state. The obtained results demonstrate the possibility of using synthesized nanopowder as a smart magnetic nanomaterial for local hyperthermia with automatic heating stabilization in the safe range of hyperthermia without the risk of mechanical damage to cell structures.
Collapse
Affiliation(s)
- A V Pashchenko
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
- Ivano-Frankivsk National Technical University of Oil and Gas, MESU 76019 Ivano-Frankivsk Ukraine
| | - N A Liedienov
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
| | - I V Fesych
- Taras Shevchenko National University of Kyiv 01030 Kyiv Ukraine
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
| | - V G Pitsyuga
- Vasyl' Stus Donetsk National University 21021 Vinnytsia Ukraine
| | - V A Turchenko
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 141980 Dubna Russia
| | - V G Pogrebnyak
- Ivano-Frankivsk National Technical University of Oil and Gas, MESU 76019 Ivano-Frankivsk Ukraine
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
| | - G G Levchenko
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
| |
Collapse
|