1
|
Nazir F, Munir I, Yesiloz G. A Microfluidics-Assisted Double-Barreled Nanobioconjugate Synthesis Introducing Aprotinin as a New Moonlight Nanocarrier Protein: Tested toward Physiologically Relevant 3D-Spheroid Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18311-18326. [PMID: 38564228 DOI: 10.1021/acsami.3c16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proteins are promising substances for introducing new drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nanoplatforms with manipulable payload release profiles. Here, we report a novel anticancer nanodrug carrier moonlighting protein, Aprotinin, to be used as a newly identified carrier for cytotoxic drugs. The Aprotinin-Doxorubicin (Apr-Dox) nanobioconjugate was prepared via a single-step microfluidics coflow mixing technique, a feasible and simple way to synthesize a carrier-based drug design with a double-barreled approach that can release and actuate two therapeutic agents simultaneously, i.e., Apr-Dox in 1:11 ratio (the antimetastatic carrier drug aprotinin and the chemotherapeutic drug DOX). With a significant stimuli-sensitive (i.e., pH) drug release ability, this nanobioconjugate achieves superior bioperformances, including high cellular uptake, efficient tumor penetration, and accumulation into the acidic tumor microenvironment, besides inhibiting further tumor growth by halting the urokinase plasminogen activator (uPA) involved in metastasis and tumor progression. Distinctly, in healthy human umbilical vein endothelial (HUVEC) cells, drastically lower cellular uptake of nanobioconjugates has been observed and validated compared to the anticancer agent Dox. Our findings demonstrate an enhanced cellular internalization of nanobioconjugates toward breast cancer, prostate cancer, and lung cancer both in vitro and in physiologically relevant biological 3D-spheroid models. Consequently, the designed nanobioconjugate shows a high potential for targeted drug delivery via a natural and biocompatible moonlighting protein, thus opening a new avenue for proving aprotinin in cancer therapy as both an antimetastatic and a drug-carrying agent.
Collapse
Affiliation(s)
- Faiqa Nazir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Iqra Munir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| |
Collapse
|
2
|
Lim H, Kim M, Kim Y, Choo S, Kim TE, Han J, Han BJ, Lim CS, Nam J. Continuous On-Chip Cell Washing Using Viscoelastic Microfluidics. MICROMACHINES 2023; 14:1658. [PMID: 37763821 PMCID: PMC10535438 DOI: 10.3390/mi14091658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Medium exchange of particles/cells to a clean buffer with a low background is essential for biological, chemical, and clinical research, which has been conventionally conducted using centrifugation. However, owing to critical limitations, such as possible cell loss and physical stimulation of cells, microfluidic techniques have been adopted for medium exchange. This study demonstrates a continuous on-chip washing process in a co-flow system using viscoelastic and Newtonian fluids. The co-flow system was constructed by adding a small amount of biocompatible polymer (xanthan gum, XG) to a sample containing particles or cells and introducing Newtonian fluids as sheath flows. Polymer concentration-dependent and particle size-dependent lateral migration of particles in the co-flow system were examined, and then the optimal concentration and the critical particle size for medium exchange were determined at the fixed total flow rate of 100 μL/min. For clinical applications, the continuous on-chip washing of white blood cells (WBCs) in lysed blood samples was demonstrated, and the washing performance was evaluated using a scanning spectrophotometer.
Collapse
Affiliation(s)
- Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul 02841, Republic of Korea;
| | - Minji Kim
- Department of AI Electrical and Electronic Engineering, Incheon Jaeneung University, Incheon 22573, Republic of Korea;
| | - Yeongmu Kim
- Artificial Intelligence (AI)-Bio Research Center, Incheon Jaeneung University, Incheon 21987, Republic of Korea
| | - Seunghee Choo
- College of Life Sciences and Bio Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Tae Eun Kim
- Artificial Intelligence (AI)-Bio Research Center, Incheon Jaeneung University, Incheon 21987, Republic of Korea
| | - Jaesung Han
- Department of Mechanical and Control Technologies, Seoul Cyber University, Seoul 01133, Republic of Korea
| | - Byoung Joe Han
- Department of Digital Biotech, Incheon Jaeneung University, Incheon 22573, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08307, Republic of Korea
| | - Jeonghun Nam
- Artificial Intelligence (AI)-Bio Research Center, Incheon Jaeneung University, Incheon 21987, Republic of Korea
- Department of Digital Biotech, Incheon Jaeneung University, Incheon 22573, Republic of Korea
| |
Collapse
|
3
|
Bordhan P, Razavi Bazaz S, Jin D, Ebrahimi Warkiani M. Advances and enabling technologies for phase-specific cell cycle synchronisation. LAB ON A CHIP 2022; 22:445-462. [PMID: 35076046 DOI: 10.1039/d1lc00724f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell cycle synchronisation is the process of isolating cell populations at specific phases of the cell cycle from heterogeneous, asynchronous cell cultures. The process has important implications in targeted gene-editing and drug efficacy of cells and in studying cell cycle events and regulatory mechanisms involved in the cell cycle progression of multiple cell species. Ideally, cell cycle synchrony techniques should be applicable for all cell types, maintain synchrony across multiple cell cycle events, maintain cell viability and be robust against metabolic and physiological perturbations. In this review, we categorize cell cycle synchronisation approaches and discuss their operational principles and performance efficiencies. We highlight the advances and technological development trends from conventional methods to the more recent microfluidics-based systems. Furthermore, we discuss the opportunities and challenges for implementing high throughput cell synchronisation and provide future perspectives on synchronisation platforms, specifically hybrid cell synchrony modalities, to allow the highest level of phase-specific synchrony possible with minimal alterations in diverse types of cell cultures.
Collapse
Affiliation(s)
- Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
4
|
Jiang F, Xiang N. Integrated Microfluidic Handheld Cell Sorter for High-Throughput Label-Free Malignant Tumor Cell Sorting. Anal Chem 2022; 94:1859-1866. [PMID: 35020366 DOI: 10.1021/acs.analchem.1c04819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Handheld sample preparation devices are urgently required for point-of-care diagnosis in resource-limited settings. In this paper, we develop a novel handheld sorter with a multifunction integrated microfluidic chip. The integrated microfluidic handheld sorter (μHCS) is composed of three units, including cartridges, shells, and core integrated microchip. The integrated microchip contains two flow regulators for achieving the on-chip regulation of the input flows generated by a low-cost diaphragm pump to the desired flow rates and a spiral inertial microfluidic channel for size-based cell separation. After introducing the conceptual design of our μHCS system, the performances of the separate spiral channel and flow regulator are systematically characterized and optimized, respectively. Finally, the prototype of the μHCS is successfully assembled to separate the malignant tumor cells from the clinical pleural effusions. Our μHCS is simple to use, inexpensive, portable, and compact and can be used for high-throughput label-free separation of rare cells from large volume samples in resource-limited areas.
Collapse
Affiliation(s)
- Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, New South Wales 2008, Australia
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Zhuge W, Liu H, Wang W, Wang J. Microfluidic Bioscaffolds for Regenerative Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
6
|
Narayana Iyengar S, Kumar T, Mårtensson G, Russom A. High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics. Electrophoresis 2021; 42:2538-2551. [PMID: 34510466 DOI: 10.1002/elps.202100140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Improved sample preparation has the potential to address unmet needs for fast turnaround sepsis tests. In this work, we report elasto-inertial based rapid bacteria separation from diluted blood at high separation efficiency. In viscoelastic flows, we demonstrate novel findings where blood cells prepositioned at the outer wall entering a spiral device remain fully focused throughout the channel length while smaller bacteria migrate to the opposite wall. Initially, using microparticles, we show that particles above a certain size cut-off remain fully focused at the outer wall while smaller particles differentially migrate toward the inner wall. We demonstrate particle separation at 1 μm resolution at a total throughput of 1 mL/min. For blood-based experiments, a minimum of 1:2 dilution was necessary to fully focus blood cells at the outer wall. Finally, Escherichia coli spiked in diluted blood were continuously separated at a total flow rate of 1 mL/min, with efficiencies between 82 and 90% depending on the blood dilution. Using a single spiral, it takes 40 min to process 1 mL of blood at a separation efficiency of 82%. The label-free, passive, and rapid bacteria isolation method has a great potential for speeding up downstream phenotypic and genotypic analysis.
Collapse
Affiliation(s)
- Sharath Narayana Iyengar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tharagan Kumar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Gustaf Mårtensson
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Fallahi H, Yadav S, Phan HP, Ta H, Zhang J, Nguyen NT. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. LAB ON A CHIP 2021; 21:2008-2018. [PMID: 34008666 DOI: 10.1039/d1lc00082a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.
Collapse
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
8
|
Fallahi H, Zhang J, Nicholls J, Phan HP, Nguyen NT. Stretchable Inertial Microfluidic Device for Tunable Particle Separation. Anal Chem 2020; 92:12473-12480. [DOI: 10.1021/acs.analchem.0c02294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jordan Nicholls
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
9
|
Editorial for the Special Issue on Particles Separation in Microfluidic Devices. MICROMACHINES 2020; 11:mi11060602. [PMID: 32580468 PMCID: PMC7345332 DOI: 10.3390/mi11060602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 11/17/2022]
|
10
|
Zhu S, Jiang F, Han Y, Xiang N, Ni Z. Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 2020; 145:7103-7124. [DOI: 10.1039/d0an01148g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A review discussing the working principles and performances of label-free CTC sorting methods.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering
- and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments
- Southeast University
- Nanjing
- China
| | - Fengtao Jiang
- School of Mechanical Engineering
- and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments
- Southeast University
- Nanjing
- China
| | - Yu Han
- School of Mechanical Engineering
- and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments
- Southeast University
- Nanjing
- China
| | - Nan Xiang
- School of Mechanical Engineering
- and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments
- Southeast University
- Nanjing
- China
| | - Zhonghua Ni
- School of Mechanical Engineering
- and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments
- Southeast University
- Nanjing
- China
| |
Collapse
|