1
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
2
|
Li J, Fan L, Li Y, Wei T, Wang C, Li F, Tian H, Sun D. Development of Cell-Carrying Magnetic Microrobots with Bioactive Nanostructured Titanate Surface for Enhanced Cell Adhesion. MICROMACHINES 2021; 12:mi12121572. [PMID: 34945424 PMCID: PMC8707319 DOI: 10.3390/mi12121572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Cell-carrying magnet-driven microrobots are easily affected by blood flow or body fluids during transportation in the body, and thus cells often fall off from the microrobots. To reduce the loss of loaded cells, we developed a microrobot with a bioactive nanostructured titanate surface (NTS), which enhances cell adhesion. The microrobot was fabricated using 3D laser lithography and coated with nickel for magnetic actuation. Then, the microrobot was coated with titanium for the external generation of an NTS through reactions in NaOH solution. Enhanced cell adhesion may be attributed to the changes in the surface wettability of the microrobot and in the morphology of the loaded cells. An experiment was performed on a microfluidic chip for the simulation of blood flow environment, and result revealed that the cells adhered closely to the microrobot with NTS and were not obviously affected by flow. The cell viability and protein absorption test and alkaline phosphatase activity assay indicated that NTS can provide a regulatory means for improving cell proliferation and early osteogenic differentiation. This research provided a novel microrobotic platform that can positively influence the behaviour of cells loaded on microrobots through surface nanotopography, thereby opening up a new route for microrobot cell delivery.
Collapse
Affiliation(s)
- Junyang Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Science Park, Hong Kong, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Science Park, Hong Kong, China
| | - Yanfang Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
| | - Tanyong Wei
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
| | - Cheng Wang
- Department of Orthopaedics/Engineering Research Center of Bone and Joint Precision Medicine/Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.W.); (F.L.); (H.T.)
| | - Feng Li
- Department of Orthopaedics/Engineering Research Center of Bone and Joint Precision Medicine/Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.W.); (F.L.); (H.T.)
| | - Hua Tian
- Department of Orthopaedics/Engineering Research Center of Bone and Joint Precision Medicine/Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; (C.W.); (F.L.); (H.T.)
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China; (J.L.); (L.F.); (Y.L.); (T.W.)
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Science Park, Hong Kong, China
- Correspondence:
| |
Collapse
|
3
|
Laser Actuated Microgripper Using Optimized Chevron-Shaped Actuator. MICROMACHINES 2021; 12:mi12121487. [PMID: 34945336 PMCID: PMC8706880 DOI: 10.3390/mi12121487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022]
Abstract
In this paper, we propose a laser actuated microgripper that can be activated remotely for micromanipulation applications. The gripper is based on an optothermally actuated polymeric chevron-shaped structure coated with optimized metallic layers to enhance its optical absorbance. Gold is used as a metallic layer due to its good absorption of visible light. The thermal deformation of the chevron-shaped actuator with metallic layers is first modeled to identify the parameters affecting its behavior. Then, an optimal thickness of the metallic layers that allows the largest possible deformation is obtained and compared with simulation results. Next, microgrippers are fabricated using conventional photolithography and metal deposition techniques for further characterization. The experiments show that the microgripper can realize an opening of 40 µm, a response time of 60 ms, and a generated force in the order of hundreds of µN. Finally, a pick-and-place experiment of 120 µm microbeads is conducted to confirm the performance of the microgripper. The remote actuation and the simple fabrication and actuation of the proposed microgripper makes it a highly promising candidate to be utilized as a mobile microrobot for lab-on-chip applications.
Collapse
|
4
|
Tiwari B, Billot M, Clévy C, Agnus J, Piat E, Lutz P. A Two-Axis Piezoresistive Force Sensing Tool for Microgripping. SENSORS (BASEL, SWITZERLAND) 2021; 21:6059. [PMID: 34577266 PMCID: PMC8473119 DOI: 10.3390/s21186059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Force sensing has always been an important necessity in making decisions for manipulation. It becomes more appealing in the micro-scale context, especially where the surface forces become predominant. In addition, the deformations happening at the very local level are often coupled, and therefore providing multi-axis force sensing capabilities to microgripper becomes an important necessity. The manufacturing of a multi-axis instrumented microgripper comprises several levels of complexity, especially when it comes to the single wafer fabrication of a sensing and actuation mechanism. To address these requirements, in this work, an instrumented two-axis force sensing tool is proposed, which can then be integrated with the appropriate actuators for microgripping. Indeed, based on the task, the gripper design and shape requirements may differ. To cover wide needs, a versatile manufacturing strategy comprising of the separate fabrication of the passive and sensing parts was especially investigated. At the microscale, signal processing brings additional challenges, especially when we are dealing with multi-axis sensing. Therefore, a proper device, with efficient and appropriate systems and signal processing integration, is highly important. To keep these requirements in consideration, a dedicated clean-room based micro-fabrication of the devices and corresponding electronics to effectively process the signals are presented in this work. The fabricated sensing part can be assembled with wide varieties of passive parts to have different sensing tools as well as grippers. This force sensing tool is based upon the piezoresistive principle, and is experimentally demonstrated with a sensing capability up to 9 mN along the two axes with a resolution of 20 μN. The experimental results validate the measurement error within 1%. This work explains the system design, its working principle, FEM analysis, its fabrication and assembly, followed by the experimental validation of its performance. Moreover, the use of the proposed sensing tool for an instrumented gripper was also discussed and demonstrated with a micrograsping and release task.
Collapse
Affiliation(s)
- Bhawnath Tiwari
- Department of Automatic Control and Micro-Mechatronic Systems, FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, 24 rue Savary, F-25000 Besançon, France; (B.T.); (J.A.); (E.P.); (P.L.)
| | - Margot Billot
- Percipio Robotics, Maison des Microtechniques, 18 rue Alain Savary, F-25000 Besançon, France;
| | - Cédric Clévy
- Department of Automatic Control and Micro-Mechatronic Systems, FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, 24 rue Savary, F-25000 Besançon, France; (B.T.); (J.A.); (E.P.); (P.L.)
| | - Joël Agnus
- Department of Automatic Control and Micro-Mechatronic Systems, FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, 24 rue Savary, F-25000 Besançon, France; (B.T.); (J.A.); (E.P.); (P.L.)
| | - Emmanuel Piat
- Department of Automatic Control and Micro-Mechatronic Systems, FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, 24 rue Savary, F-25000 Besançon, France; (B.T.); (J.A.); (E.P.); (P.L.)
| | - Philippe Lutz
- Department of Automatic Control and Micro-Mechatronic Systems, FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, 24 rue Savary, F-25000 Besançon, France; (B.T.); (J.A.); (E.P.); (P.L.)
| |
Collapse
|
5
|
Lee CY, Lin YY, Kuo CK, Fu LM. Design and Application of MEMS-Based Hall Sensor Array for Magnetic Field Mapping. MICROMACHINES 2021; 12:mi12030299. [PMID: 33809131 PMCID: PMC7998490 DOI: 10.3390/mi12030299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/26/2023]
Abstract
A magnetic field measurement system based on an array of Hall sensors is proposed. The sensors are fabricated using conventional microelectromechanical systems (MEMS) techniques and consist of a P-type silicon substrate, a silicon dioxide isolation layer, a phosphide-doped cross-shaped detection zone, and gold signal leads. When placed within a magnetic field, the interaction between the local magnetic field produced by the working current and the external magnetic field generates a measurable Hall voltage from which the strength of the external magnetic field is then derived. Four Hall sensors are fabricated incorporating cross-shaped detection zones with an identical aspect ratio (2.625) but different sizes (S, M, L, and XL). For a given working current, the sensitivities and response times of the four devices are found to be almost the same. However, the offset voltage increases with the increasing size of the detection zone. A 3 × 3 array of sensors is assembled into a 3D-printed frame and used to determine the magnetic field distributions of a single magnet and a group of three magnets, respectively. The results show that the constructed 2D magnetic field contour maps accurately reproduce both the locations of the individual magnets and the distributions of the magnetic fields around them.
Collapse
Affiliation(s)
- Chia-Yen Lee
- Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.L.); (C.-K.K.)
| | - Yu-Ying Lin
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Chung-Kang Kuo
- Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.L.); (C.-K.K.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-7-27575752-63321
| |
Collapse
|