1
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2024; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
2
|
Cho H, Byun SS, Son NH, Chung JI, Seo WI, Lee CH, Morgan TM, Han KH, Chung JS. Impact of Circulating Tumor Cell-Expressed Prostate-Specific Membrane Antigen and Prostate-Specific Antigen Transcripts in Different Stages of Prostate Cancer. Clin Cancer Res 2024; 30:1788-1800. [PMID: 38587547 DOI: 10.1158/1078-0432.ccr-23-3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-based images, which visually quantify PSMA expression, are used to determine prostate cancer micrometastases. This study evaluated whether a circulating tumor cell (CTC)-based transcript platform, including PSMA mRNA, could help identify potential prognostic markers in prostate cancer. EXPERIMENTAL DESIGN We prospectively enrolled 21 healthy individuals and 247 patients with prostate cancer [localized prostate cancer (LPCa), n = 94; metastatic hormone-sensitive prostate cancer (mHSPC), n = 44; and metastatic castration-resistant prostate cancer (mCRPC), n = 109]. The mRNA expression of six transcripts [PSMA, prostate-specific antigen (PSA), AR, AR-V7, EpCAM, and KRT 19] from CTCs was measured, and their relationship with biochemical recurrence (BCR) in LPCa and mCRPC progression-free survival (PFS) rate in mHSPC was assessed. PSA-PFS and radiological-PFS were also calculated to identify potential biomarkers for predicting androgen receptor signaling inhibitor (ARSI) and taxane-based chemotherapy resistance in mCRPC. RESULTS CTC detection rates were 75.5%, 95.3%, and 98.0% for LPCa, mHSPC, and mCRPC, respectively. In LPCa, PSMA [hazard ratio (HR), 3.35; P = 0.028) and PSA mRNA (HR, 1.42; P = 0.047] expressions were associated with BCR. Patients with mHSPC with high PSMA (HR, 4.26; P = 0.020) and PSA mRNA (HR, 3.52; P = 0.042) expressions showed significantly worse mCRPC-PFS rates than those with low expression. Increased PSA and PSMA mRNA expressions were significantly associated with shorter PSA-PFS and radiological PFS in mCPRC, indicating an association with drug resistance. CONCLUSIONS PSMA and PSA mRNA expressions are associated with BCR in LPCa. In advanced prostate cancer, PSMA and PSA mRNA can also predict rapid progression from mHSPC to mCRPC and ARSI or taxane-based chemotherapy resistance.
Collapse
MESH Headings
- Humans
- Male
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Prostate-Specific Antigen/blood
- Aged
- Glutamate Carboxypeptidase II/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Middle Aged
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/blood
- Prostatic Neoplasms/mortality
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Aged, 80 and over
- Prospective Studies
- Kallikreins/blood
- Kallikreins/genetics
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nak-Hoon Son
- Department of Statistics, Keimyung University, Daegu, South Korea
| | - Jae Il Chung
- Department of Urology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Won Ik Seo
- Department of Urology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Chan Ho Lee
- Department of Urology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Ki-Ho Han
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| | - Jae-Seung Chung
- Department of Urology, Haeundae Paik Hospital, Inje University, Busan, South Korea
| |
Collapse
|
3
|
Seyfoori A, Seyyed Ebrahimi SA, Samandari M, Samiei E, Stefanek E, Garnis C, Akbari M. Microfluidic-Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205320. [PMID: 36720798 DOI: 10.1002/smll.202205320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Bitechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90024, USA
| |
Collapse
|
4
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
5
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
6
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
7
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
8
|
Cho H, Oh CK, Cha J, Chung JI, Byun SS, Hong SK, Chung JS, Han KH. Association of serum prostate specific antigen (PSA) level and circulating tumor cell-based PSA mRNA in prostate cancer. Prostate Int 2022; 10:14-20. [PMID: 35229001 PMCID: PMC8844604 DOI: 10.1016/j.prnil.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 11/26/2022] Open
|