1
|
Williams DE, Li W, Chandrasekhar M, Corazza CMOW, Deijs GS, Djoko L, Govind B, Jose E, Kwon YJ, Lowe T, Panchal A, Reshef G, Vargas MJT, Simpson MC. Lab on a bead with oscillatory centrifugal microfluidics for fast and complete mixing enables fast and accurate biomedical assays. Sci Rep 2024; 14:8637. [PMID: 38622241 PMCID: PMC11018808 DOI: 10.1038/s41598-024-58720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Rapid mixing and precise timing are key for accurate biomedical assay measurement, particularly when the result is determined as the rate of a reaction: for example rapid immunoassay in which the amount of captured target is kinetically determined; determination of the concentration of an enzyme or enzyme substrate; or as the final stage in any procedure that involves a capture reagent when an enzyme reaction is used as the indicator. Rapid mixing and precise timing are however difficult to achieve in point-of-care devices designed for small sample volumes and fast time to result. By using centrifugal microfluidics and transposing the reaction surface from a chamber to a single mm-scale bead we demonstrate an elegant and easily manufacturable solution. Reagents (which may be, for example, an enzyme, enzyme substrate, antibody or antigen) are immobilised on the surface of a single small bead (typically 1-2 mm in diameter) contained in a cylindrical reaction chamber subjected to periodically changing rotational accelerations which promote both mixing and uniform mass-transfer to the bead surface. The gradient of Euler force across the chamber resulting from rotational acceleration of the disc, dΩdisc/dt, drives circulation of fluid in the chamber. Oscillation of Euler force by oscillation of rotational acceleration with period, T, less than that of the hydrodynamic relaxation time of the fluid, folds the fluid streamlines. Movement of the bead in response to the fluid and the changing rotational acceleration provides a dynamically changing chamber shape, further folding and expanding the fluid. Bead rotation and translation driven by fluid flow and disc motion give uniformity of reaction over the surface. Critical parameters for mixing and reaction uniformity are the ratio of chamber radius to bead radius, rchamber/rbead, and the product Trchamber(dΩdisc/dt), of oscillation period and Euler force gradient across the fluid. We illustrate application of the concept using the reaction of horse radish peroxidase (HRP) immobilised on the bead surface with its substrate tetramethylbenzidine (TMB) in solution. Acceleration from rest to break a hydrophobic valve provided precise timing for TMB contact with the bead. Solution uniformity from reaction on the surface of the bead in volumes 20-50 uL was obtained in times of 2.5 s or less. Accurate measurement of the amount of surface-bound HRP by model fitting to the measured kinetics of colour development at 10 s intervals is demonstrated.
Collapse
Affiliation(s)
- David E Williams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Wei Li
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | | | | | - Gerrit Sjoerd Deijs
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Lionel Djoko
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Bhavesh Govind
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Ellen Jose
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Yong Je Kwon
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Tiffany Lowe
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Anil Panchal
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Gabrielle Reshef
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Matheus J T Vargas
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - M Cather Simpson
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand.
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
3
|
Lee J, Lee S, Lee M, Prakash R, Kim H, Cho G, Lee J. Enhancing Mixing Performance in a Rotating Disk Mixing Chamber: A Quantitative Investigation of the Effect of Euler and Coriolis Forces. MICROMACHINES 2022; 13:mi13081218. [PMID: 36014138 PMCID: PMC9416410 DOI: 10.3390/mi13081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
Lab-on-a-CD (LOCD) is gaining importance as a diagnostic platform due to being low-cost, easy-to-use, and portable. During LOCD usage, mixing and reaction are two processes that play an essential role in biochemical applications such as point-of-care diagnosis. In this paper, we numerically and experimentally investigate the effects of the Coriolis and Euler forces in the mixing chamber during the acceleration and deceleration of a rotating disk. The mixing performance is investigated under various conditions that have not been reported, such as rotational condition, chamber aspect ratio at a constant volume, and obstacle arrangement in the chamber. During disk acceleration and deceleration, the Euler force difference in the radial direction causes rotating flows, while the Coriolis force induces perpendicular vortices. Increasing the maximum rotational velocity improves the maximum rotational displacement, resulting in better mixing performance. A longer rotational period increases the interfacial area between solutions and enhances mixing. Mixing performance also improves when there is a substantial difference between Euler forces at the inner and outer radii. Furthermore, adding obstacles in the angular direction also passively promotes or inhibits mixing by configuration. This quantitative investigation provides valuable information for designing and developing high throughput and multiplexed point-of-care LOCDs.
Collapse
Affiliation(s)
- Jihyeong Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.L.); (S.L.)
| | - Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.L.); (S.L.)
| | - Minki Lee
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Ritesh Prakash
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Research Engineering Center for R2R Printed Flexible, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyejeong Kim
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea;
| | - Gyoujin Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Research Engineering Center for R2R Printed Flexible, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (G.C.); (J.L.)
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (J.L.); (S.L.)
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (G.C.); (J.L.)
| |
Collapse
|
4
|
Yin B, Yue W, Sohan ASMM, Zhou T, Qian C, Wan X. Micromixer with Fine-Tuned Mathematical Spiral Structures. ACS OMEGA 2021; 6:30779-30789. [PMID: 34805706 PMCID: PMC8600618 DOI: 10.1021/acsomega.1c05024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Micromixers with the microchannel structure can enable rapid and efficient mixing of multiple types of fluids on a microfluidic chip. Herein, we report the mixing performance of three passive micromixers based on the different mathematical spiral structures. We study the fluid flow characteristics of Archimedes spiral, Fermat spiral, and hyperbolic spiral structures with various channel widths and Reynolds number (Re) ranging from 0 to 10 via numerical simulation and visualization experiments. In addition, we analyze the mechanism of streamlines and Dean vortices at different cross sections during fluid flows. As the fluid flows in the Fermat spiral channel, the centrifugal force induces the Dean vortex to form a chaotic advection, enhancing the fluid mixing performance. By integrating the Fermat spiral channel into a microfluidic chip, we successfully detect acute myocardial infarction (AMI) marker with the double-antibody sandwich method and reduce the detection time to 10 min. This method has a low reagent consumption and a high reaction efficiency and demonstrates great potential in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Binfeng Yin
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenkai Yue
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | | | - Teng Zhou
- Mechanical
and Electrical Engineering College, Hainan
University, Haikou 570228, China
| | - Changcheng Qian
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinhua Wan
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
5
|
Kim KY. Editorial for the Special Issue on Analysis, Design and Fabrication of Micromixers. MICROMACHINES 2021; 12:mi12050533. [PMID: 34067182 PMCID: PMC8151095 DOI: 10.3390/mi12050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
During the last couple of decades, there have been rapid developments in analysis, design, and fabrication of micromixers [...].
Collapse
Affiliation(s)
- Kwang-Yong Kim
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|