1
|
Hopfes T, Tahvildari R, de Wijs K, Dang C, Fondu J, Lagae L, Libbrecht S. Durability of the bubble-jet sorter enables high performance bio sample isolation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6030-6040. [PMID: 39175464 DOI: 10.1039/d4ay01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Sorting cells while maintaining their viability for further processing or analysis is an essential step in a variety of biological processes ranging from early diagnostics to cell therapy. Sorting techniques such as fluorescence-activated cell sorting (FACS) have evolved considerably and provide standard ways of sorting. Nevertheless, the search for compact, integrated, efficient, and high throughput microfluidic sorting platforms continues due to challenges such as cost, cell viability, and biosafety. In our previous work, we introduced a technology with the potential to become such a platform: the bubble-jet sorter. It is a silicon-based sorter chip relying on cell deflection through micro vapor bubble formation. In this work, we present a new version of the sorter chip that emphasizes durability and continuous sorting operation. To characterize the sorter, we first focus on the technical performance and show a sorter lifetime that repeatedly exceeds 80 million actuation cycles. In addition, we show continuous operation at high firing rates, but also discuss limitations due to heat buildup. In a second step, we present continuous sorting runs of millions of beads and CD3 positive T cells at rates surpassing 1000 sorting events per second, while maintaining high purity (>90%) and recovery (>85%). Dedicated viability tests show that the gentle sorting process maintains cell viability in this closed, aerosol-free device. The remarkable combination of high lifetime, sorting rate, and sorting efficiency, along with the potential for on-chip parallelization show the promise of this technology to meet the growing demand for large-scale sample isolation in drug and immunotherapy development.
Collapse
Affiliation(s)
| | | | | | - Chi Dang
- imec, Kapeldreef 75, 3001 Leuven, Belgium.
| | | | - Liesbet Lagae
- imec, Kapeldreef 75, 3001 Leuven, Belgium.
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | | |
Collapse
|
2
|
Chen Y, Sun T, Liu Z, Zhang Y, Wang J. Towards Design Automation of Microfluidic Mixers: Leveraging Reinforcement Learning and Artificial Neural Networks. MICROMACHINES 2024; 15:901. [PMID: 39064412 PMCID: PMC11278837 DOI: 10.3390/mi15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Microfluidic mixers, a pivotal application of microfluidic technology, are primarily utilized for the rapid amalgamation of diverse samples within microscale devices. Given the intricacy of their design processes and the substantial expertise required from designers, the intelligent automation of microfluidic mixer design has garnered significant attention. This paper discusses an approach that integrates artificial neural networks (ANNs) with reinforcement learning techniques to automate the dimensional parameter design of microfluidic mixers. In this study, we selected two typical microfluidic mixer structures for testing and trained two neural network models, both highly precise and cost-efficient, as alternatives to traditional, time-consuming finite-element simulations using up to 10,000 sets of COMSOL simulation data. By defining effective state evaluation functions for the reinforcement learning agents, we utilized the trained agents to successfully validate the automated design of dimensional parameters for these mixer structures. The tests demonstrated that the first mixer model could be automatically optimized in just 0.129 s, and the second in 0.169 s, significantly reducing the time compared to manual design. The simulation results validated the potential of reinforcement learning techniques in the automated design of microfluidic mixers, offering a new solution in this field.
Collapse
Affiliation(s)
| | | | | | | | - Junchao Wang
- School of Integrated Circuit Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Ekwe AP, Au R, Zhang P, McEnroe BA, Tan ML, Saldan A, Henden AS, Hutchins CJ, Henderson A, Mudie K, Kerr K, Fuery M, Kennedy GA, Hill GR, Tey SK. Clinical grade multiparametric cell sorting and gene-marking of regulatory T cells. Cytotherapy 2024; 26:719-728. [PMID: 38530690 DOI: 10.1016/j.jcyt.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity. METHODS We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs. RESULTS We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×106 gene-marked cells, sufficient for a cell dose of at least 2 × 106 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A. CONCLUSIONS This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.
Collapse
Affiliation(s)
- Adaeze Precious Ekwe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Raymond Au
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Benjamin A McEnroe
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mei Ling Tan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alda Saldan
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S Henden
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Cheryl J Hutchins
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ashleigh Henderson
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Kari Mudie
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Keri Kerr
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Madonna Fuery
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Glen A Kennedy
- Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Siok-Keen Tey
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia; Department of Haematology and Bone Marrow Transplantation, Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
4
|
Jooken S, Zinoviev K, Yurtsever G, De Proft A, de Wijs K, Jafari Z, Lebanov A, Jeevanandam G, Kotyrba M, Gorjup E, Fondu J, Lagae L, Libbrecht S, Van Dorpe P, Verellen N. On-chip flow cytometer using integrated photonics for the detection of human leukocytes. Sci Rep 2024; 14:10921. [PMID: 38769346 PMCID: PMC11106258 DOI: 10.1038/s41598-024-60708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Differentiation between leukocyte subtypes like monocytes and lymphocytes is essential for cell therapy and research applications. To guarantee the cost-effective delivery of functional cells in cell therapies, billions of cells must be processed in a limited time. Yet, the sorting rates of commercial cell sorters are not high enough to reach the required yield. Process parallelization by using multiple instruments increases variability and production cost. A compact solution with higher throughput can be provided by multichannel flow cytometers combining fluidics and optics on-chip. In this work, we present a micro-flow cytometer with monolithically integrated photonics and fluidics and demonstrate that both the illumination of cells, as well as the collection of scattered light, can be realized using photonic integrated circuits. Our device is the first with sufficient resolution for the discrimination of lymphocytes and monocytes. Innovations in microfabrication have enabled complete integration of miniaturized photonic components and fluidics in a CMOS-compatible wafer stack. In combination with external optics, the device is ready for the collection of fluorescence using the on-chip excitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Erwin Gorjup
- Sarcura GmbH, Plöcking 2, Klosterneuburg, Austria
| | | | | | | | | | | |
Collapse
|
5
|
Libbrecht S, Vankerckhoven A, de Wijs K, Baert T, Thirion G, Vandenbrande K, Van Gorp T, Timmerman D, Coosemans A, Lagae L. A Microfluidics Approach for Ovarian Cancer Immune Monitoring in an Outpatient Setting. Cells 2023; 13:7. [PMID: 38201211 PMCID: PMC10778191 DOI: 10.3390/cells13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Among cancer diagnoses in women, ovarian cancer has the fifth-highest mortality rate. Current treatments are unsatisfactory, and new therapies are highly needed. Immunotherapies show great promise but have not reached their full potential in ovarian cancer patients. Implementation of an immune readout could offer better guidance and development of immunotherapies. However, immune profiling is often performed using a flow cytometer, which is bulky, complex, and expensive. This equipment is centralized and operated by highly trained personnel, making it cumbersome and time-consuming. We aim to develop a disposable microfluidic chip capable of performing an immune readout with the sensitivity needed to guide diagnostic decision making as close as possible to the patient. As a proof of concept of the fluidics module of this concept, acquisition of a limited immune panel based on CD45, CD8, programmed cell death protein 1 (PD1), and a live/dead marker was compared to a conventional flow cytometer (BD FACSymphony). Based on a dataset of peripheral blood mononuclear cells of 15 patients with ovarian cancer across different stages of treatment, we obtained a 99% correlation coefficient for the detection of CD8+PD1+ T cells relative to the total amount of CD45+ white blood cells. Upon further system development comprising further miniaturization of optics, this microfluidics chip could enable immune monitoring in an outpatient setting, facilitating rapid acquisition of data without the need for highly trained staff.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
| | - Ann Vankerckhoven
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Koen de Wijs
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
| | - Thaïs Baert
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Oncology, Gynecological Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Gitte Thirion
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Katja Vandenbrande
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Toon Van Gorp
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Oncology, Gynecological Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Dirk Timmerman
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Liesbet Lagae
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
- Physics Department, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
6
|
Savageau MA. Phenotype Design Space Provides a Mechanistic Framework Relating Molecular Parameters to Phenotype Diversity Available for Selection. J Mol Evol 2023; 91:687-710. [PMID: 37620617 PMCID: PMC10598110 DOI: 10.1007/s00239-023-10127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Two long-standing challenges in theoretical population genetics and evolution are predicting the distribution of phenotype diversity generated by mutation and available for selection, and determining the interaction of mutation, selection and drift to characterize evolutionary equilibria and dynamics. More fundamental for enabling such predictions is the current inability to causally link genotype to phenotype. There are three major mechanistic mappings required for such a linking - genetic sequence to kinetic parameters of the molecular processes, kinetic parameters to biochemical system phenotypes, and biochemical phenotypes to organismal phenotypes. This article introduces a theoretical framework, the Phenotype Design Space (PDS) framework, for addressing these challenges by focusing on the mapping of kinetic parameters to biochemical system phenotypes. It provides a quantitative theory whose key features include (1) a mathematically rigorous definition of phenotype based on biochemical kinetics, (2) enumeration of the full phenotypic repertoire, and (3) functional characterization of each phenotype independent of its context-dependent selection or fitness contributions. This framework is built on Design Space methods that relate system phenotypes to genetically determined parameters and environmentally determined variables. It also has the potential to automate prediction of phenotype-specific mutation rate constants and equilibrium distributions of phenotype diversity in microbial populations undergoing steady-state exponential growth, which provides an ideal reference to which more realistic cases can be compared. Although the framework is quite general and flexible, the details will undoubtedly differ for different functions, organisms and contexts. Here a hypothetical case study involving a small molecular system, a primordial circadian clock, is used to introduce this framework and to illustrate its use in a particular case. The framework is built on fundamental biochemical kinetics. Thus, the foundation is based on linear algebra and reasonable physical assumptions, which provide numerous opportunities for experimental testing and further elaboration to deal with complex multicellular organisms that are currently beyond its scope. The discussion provides a comparison of results from the PDS framework with those from other approaches in theoretical population genetics.
Collapse
Affiliation(s)
- Michael A Savageau
- Department of Microbiology & Molecular Genetics, University of California, 228 Briggs, Davis, CA, 95616, USA.
- Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Wu T, Tan JHL, Sin W, Luah YH, Tan SY, Goh M, Birnbaum ME, Chen Q, Cheow LF. Cell Granularity Reflects Immune Cell Function and Enables Selection of Lymphocytes with Superior Attributes for Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302175. [PMID: 37544893 PMCID: PMC10558660 DOI: 10.1002/advs.202302175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Indexed: 08/08/2023]
Abstract
In keeping with the rule of "form follows function", morphological aspects of a cell can reflect its role. Here, it is shown that the cellular granularity of a lymphocyte, represented by its intrinsic side scatter (SSC), is a potent indicator of its cell state and function. The granularity of a lymphocyte increases from naïve to terminal effector state. High-throughput cell-sorting yields a SSChigh population that can mediate immediate effector functions, and a highly prolific SSClow population that can give rise to the replenishment of the memory pool. CAR-T cells derived from the younger SSClow population possess desirable attributes for immunotherapy, manifested by increased naïve-like cells and stem cell memory (TSCM )-like cells together with a balanced CD4/CD8 ratio, as well as enhanced target-killing in vitro and in vivo. Altogether, lymphocyte segregation based on biophysical properties is an effective approach for label-free selection of cells that share collective functions and can have important applications for cell-based immunotherapies.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Wei‐Xiang Sin
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Yen Hoon Luah
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Myra Goh
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Michael E. Birnbaum
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Lih Feng Cheow
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| |
Collapse
|
8
|
Matsumoto M, Tashiro S, Ito T, Takahashi K, Hashimoto G, Kajihara J, Miyahara Y, Shiku H, Katsumoto Y. Fully closed cell sorter for immune cell therapy manufacturing. Mol Ther Methods Clin Dev 2023; 30:367-376. [PMID: 37637381 PMCID: PMC10457513 DOI: 10.1016/j.omtm.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
By analyzing patients treated with adoptive immune cell therapies, various immune cell phenotypes have been found in the starting and infused materials as determinants of sustained remission. The isolation of these specific phenotypes for clinical use requires current Good Manufacturing Practice (cGMP)-compliant cell-sorting technologies with multiparameter selection capabilities. Here, we developed a cGMP-requirement-applicable fully closed cell sorter that has a suction mechanism and multiparameter detection using two laser optical settings. Negative pressure generated by a change in the chamber volume at a sorting point allows the isolation of cells of interest with high viability and purity. Our study demonstrated that this microfluidic sorter enables the isolation of cells of interest at an effective rate of 7,000 sorts per second on average. A purity of 85.5% and 77.1% effective yield with 93.7% viability was obtained when applying a target population of 35.9% in total (lymphocyte+CD8+) at 15,000 events per second (2 × 107 cells/mL). The sorted gene-modified T cells maintain largely unaltered proliferation, antigen recognition, cytokine release, and cytotoxicity functionalities.
Collapse
Affiliation(s)
| | - Shinji Tashiro
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Tokyo, Japan
| | - Tatsumi Ito
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Tokyo, Japan
| | - Kazuya Takahashi
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Tokyo, Japan
| | - Gakuji Hashimoto
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Tokyo, Japan
| | - Junji Kajihara
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Tokyo, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
- Center for Comprehensive Cancer Immunotherapy, Mie University, Mie, Japan
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
- Center for Comprehensive Cancer Immunotherapy, Mie University, Mie, Japan
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoichi Katsumoto
- Tokyo Laboratory 11, R&D Center, Sony Group Corporation, Tokyo, Japan
| |
Collapse
|
9
|
Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021; 146:7070-7086. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingjing Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Renjie Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|