1
|
Wang YZ, Wang LL, Liu Y, Zhang YQ, Li ML, Chen CX, Zhu JW, Yang F, Hu YH. Dual "on-off" signal conversion strategy based on surface plasmon coupling and resonance energy transfer for visual electrochemiluminescence ratiometric analysis of MiRNA-141. Biosens Bioelectron 2024; 253:116162. [PMID: 38437748 DOI: 10.1016/j.bios.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
An electrochemiluminescence (ECL) biosensor with a pair of new ECL emitters and a novel sensing mechanism was designed for the high-sensitivity detection of microRNA-141 (miRNA-141). Sulfur-doped boron nitrogen quantum dots (S-BN QDs) were initially employed to modify the cathode of the bipolar electrode (BPE), while the anode reservoir was [Ir(dfppy)2(bpy)]PF6/TPrA system. The next step involved attaching H1-bound ultra-small WO3-x nanodots (WO3-x NDs) to the S-BN QDs-modified BPE cathode via DNA hybridization. A strong surface plasmon coupling (SPC) effect was observed between S-BN QDs and WO3-x NDs, which allowed for the enhancement of the red and visible ECL emission from S-BN QDs. After target-induced cyclic amplification to produce abundant Zn2+ and Au NPs-DNA3-Au NPs (Au NPs-S3-Au NPs), Zn2+ could cleave DNA at a nucleotide sequence-specific recognition site to release the WO3-x NDs, resulting in the first diminution of cathode ECL signal and the first enhancement of anode ECL signal. Moreover, the ECL signal at cathode decreased for the second time and the emission of [Ir(dfppy)2(bpy)]PF6 was continuously enhanced after the introduction of Au nanoparticles-S3-Au nanoparticles on the cathode surface. Our sensing mode with a dual "on-off" signal conversion strategy shows a good detection capability for miRNAs ranging from 10-17 to 10-10 M, with a limit of detection (LOD) as low as 10-17 M, which has great application potential in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yin-Zhu Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Ling-Ling Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China; College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Yan Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yu-Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Meng-Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Chuan-Xiang Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| | - Jia-Wan Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China; College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Fu Yang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China; College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Yong-Hong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
2
|
Sassi A, You L. Microfluidics-Based Technologies for the Assessment of Castration-Resistant Prostate Cancer. Cells 2024; 13:575. [PMID: 38607014 PMCID: PMC11011521 DOI: 10.3390/cells13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Castration-resistant prostate cancer remains a significant clinical challenge, wherein patients display no response to existing hormone therapies. The standard of care often includes aggressive treatment options using chemotherapy, radiation therapy and various drugs to curb the growth of additional metastases. As such, there is a dire need for the development of innovative technologies for both its diagnosis and its management. Traditionally, scientific exploration of prostate cancer and its treatment options has been heavily reliant on animal models and two-dimensional (2D) in vitro technologies. However, both laboratory tools often fail to recapitulate the dynamic tumor microenvironment, which can lead to discrepancies in drug efficacy and side effects in a clinical setting. In light of the limitations of traditional animal models and 2D in vitro technologies, the emergence of microfluidics as a tool for prostate cancer research shows tremendous promise. Namely, microfluidics-based technologies have emerged as powerful tools for assessing prostate cancer cells, isolating circulating tumor cells, and examining their behaviour using tumor-on-a-chip models. As such, this review aims to highlight recent advancements in microfluidics-based technologies for the assessment of castration-resistant prostate cancer and its potential to advance current understanding and to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 2V9, Canada
| |
Collapse
|
3
|
Zhou Z, Ni C, Zhu Z, Chen Y, Ni Z, Xiang N. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel. LAB ON A CHIP 2023; 23:4528-4539. [PMID: 37766593 DOI: 10.1039/d3lc00591g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Cell mechanical properties provide a label-free marker for indicating cell states and disease processes. Although microfluidic deformability cytometry has demonstrated great potential and successes in mechanical phenotyping in recent years, its universal applicability for characterizing multiple sizes of cells using a single device has not been realized. Herein, we propose high-throughput adjustable deformability cytometry integrated with three-dimensional (3D) elasto-inertial focusing and a virtual fluidic channel. By properly adjusting the flow ratio of the sample and sheath, the virtual fluidic channel in a wide solid channel can generate a strong shear force in the normal direction of the flow velocity and simultaneously squeeze cells from both sides to induce significant cell deformation. The combination of elasto-inertial focusing and a virtual fluidic channel provides a great hydrodynamic symmetrical force for inducing significant and homogeneous cell deformation. In addition, our deformability cytometry system not only achieves rapid and precise cell deformation, but also allows the adjustable detection of multiple sizes of cells at a high throughput of up to 3000 cells per second. The mini-bilateral segmentation network (mini-BiSeNet) was developed to identify cells and extract features quickly. The classification of different cell populations (A549, MCF-7, MDA-MB-231, and WBCs) was carried out based on the cell size and deformation. By applying deep learning to cell classification, a high accuracy reaching approximately 90% was achieved. We also revealed the potential of our deformability cytometry for characterizing pleural effusions. The flexibility of our deformability cytometry holds promise for the mechanical phenotyping and detection of various biological samples.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Chen Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhixian Zhu
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Li C, Holman JB, Shi Z, Qiu B, Ding W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater Today Bio 2023; 21:100724. [PMID: 37483380 PMCID: PMC10359640 DOI: 10.1016/j.mtbio.2023.100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.
Collapse
Affiliation(s)
- Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Joseph Benjamin Holman
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
5
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|