1
|
Julius LA, Torres Delgado SM, Mishra R, Kent N, Carthy E, Korvink JG, Mager D, Ducrée J, Kinahan DJ. Programmable fluidic networks on centrifugal microfluidic discs. Anal Chim Acta 2024; 1288:342159. [PMID: 38220291 DOI: 10.1016/j.aca.2023.342159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Biomedical diagnostic and lab automation solutions built on the Lab-on-a-Disc (LoaD) platform has great potential due to their independence from specialised micro-pumps and their ease of integration, through direct pipetting, with manual or automated workflows. However, a challenge for all microfluidic chips is their cost of manufacture when each microfluidic disc must be customized for a specific application. In this paper, we present centrifugal discs with programmable fluidic networks. RESULTS Based on dissolvable film valves, we present two technologies. The first, based on recently introduced pulse-actuated dissolvable film valves, is a centrifugal disc which, depending on how it is loaded, is configured to perform either six sequential reagent releases through one reaction chamber or three sequential reagent releases through two reaction chambers. In the second approach, we use the previously introduced electronic Lab-on-a-Disc (eLoaD) wireless valve array, which can actuate up to 128 centrifugo-pneumatic dissolvable film valves in a pre-defined sequence. In this approach we present a disc which can deliver any one of 8 reagent washes to any one of four reaction chambers. We use identical discs to demonstrate the first four sequential washes through two reaction chambers and then two sequential washes through four reaction chambers. SIGNIFICANCE These programmable fluidic networks have the potential to allow a single disc architecture to be applied to multiple different assay types and so can offer a lower-cost and more integrated alternative to the standard combination of micro-titre plate and liquid handling robot. Indeed, it may even be possible to conduct multiple different assays concurrently. This can have the effect of reducing manufacturing costs and streamlining supply-chains and so results in a more accessible diagnostic platform.
Collapse
Affiliation(s)
- Lourdes An Julius
- Fraunhofer Project Center at Dublin City University (FPC@DCU), Dublin City University, Glasnevin, Dublin 9, Ireland; School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Sarai M Torres Delgado
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Lepolshafen, 76344, Germany
| | - Rohit Mishra
- Fraunhofer Project Center at Dublin City University (FPC@DCU), Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nigel Kent
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Eadaoin Carthy
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Lepolshafen, 76344, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Lepolshafen, 76344, Germany
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - David J Kinahan
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
2
|
Early PL, Kilcawley NA, McArdle NA, Renou M, Kearney SM, Mishra R, Dimov N, Glynn MT, Ducrée J, Kinahan DJ. Digital process control of multi-step assays on centrifugal platforms using high-low-high rotational-pulse triggered valving. PLoS One 2023; 18:e0291165. [PMID: 37682949 PMCID: PMC10490917 DOI: 10.1371/journal.pone.0291165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Due to their capability for comprehensive sample-to-answer automation, the interest in centrifugal microfluidic systems has greatly increased in industry and academia over the last quarter century. The main applications of these "Lab-on-a-Disc" (LoaD) platforms are in decentralised bioanalytical point-of-use / point-of-care testing. Due to the unidirectional and omnipresent nature of the centrifugal force, advanced flow control is key to coordinate multi-step / multi-reagent assay formats on the LoaD. Formerly, flow control was often achieved by capillary burst valves which require gradual increments of the spin speed of the system-innate spindle motor. Recent advanced introduced a flow control scheme called 'rotational pulse actuated valves'. In these valves the sequence of valve actuation is determined by the architecture of the disc while actuation is triggered by freely programmable upward spike (i.e. Low-High-Low (LHL)) in the rotational frequency. This paradigm shift from conventional 'analogue' burst valves to 'digital' pulsing significantly increases the number of sequential while also improving the overall robustness of flow control. In this work, we expand on these LHL valves by introducing High-Low-High (HLH) pulse-actuated (PA) valving which are actuated by 'downward' spike in the disc spin-rate. These HLH valves are particularly useful for high spin-rate operations such as centrifugation of blood. We introduce two different HLH architectures and then combine the most promising with LHL valves to implement the time-dependent liquid handling protocol underlying a common liver function test panel.
Collapse
Affiliation(s)
- Philip L. Early
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Niamh A. Kilcawley
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Niamh A. McArdle
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Marine Renou
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
- Telecom Physique Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Sinéad M. Kearney
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Rohit Mishra
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Nikolay Dimov
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Macdara T. Glynn
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - David J. Kinahan
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
3
|
Ducrée J. Systematic review of centrifugal valving based on digital twin modeling towards highly integrated lab-on-a-disc systems. MICROSYSTEMS & NANOENGINEERING 2021; 7:104. [PMID: 34987859 PMCID: PMC8677742 DOI: 10.1038/s41378-021-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 05/07/2023]
Abstract
Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for comprehensive assay automation and multiplexing pose significant technological and economical challenges to developers. By virtue of their intrinsic capability for powerful sample preparation, centrifugal systems have attracted significant interest in academia and business since the early 1990s. This review models common, rotationally controlled valving schemes at the heart of such "Lab-on-a-Disc" (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend on geometries, location and liquid volumes to be processed, and their experimental tolerances. In absence of larger-scale manufacturing facilities during product development, the method presented here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic design optimization according to key performance metrics. This virtual in silico approach thus significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout, fluidic testing, bioanalytical validation, and scale-up to commercial mass manufacture.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Migration Behavior of Low-Density Particles in Lab-on-a-Disc Devices: Effect of Walls. MICROMACHINES 2021; 12:mi12091032. [PMID: 34577676 PMCID: PMC8471521 DOI: 10.3390/mi12091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
The effect of the lateral walls of a Lab-On-a-Disc device on the dynamics of a model system of particles with a density lower than that of the solvent (modelling parasites eggs) is analyzed theoretically and experimentally. In the absence of lateral walls, a particle always moves in the direction of the centrifugal force, while its trajectory is deflected in the tangential direction by the inertial Coriolis and Euler forces. Lateral walls, depending on the angle forming with the radial direction, can guide the particle either in the same or in the opposite direction to the centrifugal force, thus resulting in unusual particle trajectories including zig-zag or backwards particle motion. The effect is pronounced in the case of short operation times when the acceleration of the angular rotation, and thus the Euler force, is considerable. The predicted unusual motion is demonstrated by numerically solving the equation of motion in the presence of lateral walls and verified in the experiment with particles of density lower than that of the solvent. Our analysis is useful for design and operational considerations of Lab-On-a-Disc devices aiming for or involving (bio)particle handling.
Collapse
|
5
|
Design Optimization of Centrifugal Microfluidic “Lab-on-a-Disc” Systems towards Fluidic Larger-Scale Integration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhancing the degree of functional multiplexing while assuring operational reliability and manufacturability at competitive costs are crucial ingredients for enabling comprehensive sample-to-answer automation, e.g., for use in common, decentralized “Point-of-Care” or “Point-of-Use” scenarios. This paper demonstrates a model-based “digital twin” approach, which efficiently supports the algorithmic design optimization of exemplary centrifugo-pneumatic (CP) dissolvable-film (DF) siphon valves toward larger-scale integration (LSI) of well-established “Lab-on-a-Disc” (LoaD) systems. Obviously, the spatial footprint of the valves and their upstream laboratory unit operations (LUOs) have to fit, at a given radial position prescribed by its occurrence in the assay protocol, into the locally accessible disc space. At the same time, the retention rate of a rotationally actuated CP-DF siphon valve and, most challengingly, its band width related to unavoidable tolerances of experimental input parameters need to slot into a defined interval of the practically allowed frequency envelope. To accomplish particular design goals, a set of parametrized metrics is defined, which are to be met within their practical boundaries while (numerically) minimizing the band width in the frequency domain. While each LSI scenario needs to be addressed individually on the basis of the digital twin, a suite of qualitative design rules and instructive showcases structures are presented.
Collapse
|