1
|
Shukla AK, Bhandari S, Mitra S, Kim B, Dey KK. Buoyancy-Driven Micro/-Nanomotors: From Fundamentals to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308580. [PMID: 38225699 DOI: 10.1002/smll.202308580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/30/2023] [Indexed: 01/17/2024]
Abstract
The progression of self-powered micro/-nanomotors (MNMs) has rapidly evolved over the past few decades, showing applications in various fields such as nanotechnology, biomedical engineering, microfluidics, environmental science, and energy harvesting. Miniaturized MNMs transduce chemical/biochemical energies into mechanical motion for navigating through complex fluidic environments with directional control via external forces fields such as magnetic, photonic, and electric stimuli. Among various propulsion mechanisms, buoyancy-driven MNMs have received noteworthy recognition due to their simplicity, efficiency, and versatility. Buoyancy force-driven motors harness the principles of density variation-mediated force to overcome fluidic resistance to navigate through complex environments. Restricting the propulsion in one direction helps to control directional movement, making it more efficient in isotropic solutions. The changes in pH, ionic strength, chemical concentration, solute gradients, or the presence of specific molecules can influence the motion of buoyancy-driven MNMs as evidenced by earlier reports. This review aims to provide a fundamental and detailed analysis of the current state-of-the-art in buoyancy-driven MNMs, aiming to inspire further research and innovation in this promising field.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat, 382055, India
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Satyapriya Bhandari
- Department of Chemistry, Kandi Raj College, University of Kalyani, Murshidabad, Kandi, West Bengal, 742137, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India
| | - Byungki Kim
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
- Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
2
|
Perera AK, Song K, Meng X, Wan WY, Umezu S, Sato H. Metal-Plastic Hybrid Additive Manufacturing to Realize Small-Scale Self-Propelled Catalytic Engines. ACS OMEGA 2024; 9:283-293. [PMID: 38222604 PMCID: PMC10785629 DOI: 10.1021/acsomega.3c04949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/16/2024]
Abstract
Microengines driven by catalytic decomposition of a fuel have been an interesting research area recently due to their diverse applications, such as environmental monitoring and drug delivery. Literature reports a number of studies on this topic where researchers have made various attempts to manufacture such microengines. Some such methods are deposition of catalytic metal layers on sacrificial photoresists, electrochemical deposition of metal layers on polymeric structures, or 3D printing of structures followed by multi-step loading of structures with catalysts. These methods, even though proven to be effective, are tedious, time-consuming, and expensive. To address these issues, herein we report a 3D printing technique to realize microengines in a simple, rapid, and inexpensive single-step process. The printing of various shapes of microengines is achieved using digital light processing printing of a catalyst resin, where Pd(II) acts as a catalyst resin. The proposed integrated molding process can achieve cost-effective preparation of high-efficiency microengines. We demonstrate the locomotion of these microengines in 30% (w/w) H2O2 through the decomposition of H2O2 to generate oxygen to facilitate the self-propelled locomotion. The study characterizes the microengine based on several factors, such as the role of H2O2, Pd, shape, and design of the microengine, to get a full picture of the self-locomotion of microengines. The study shows that the developed method is feasible to manufacture microengines in a simple, rapid, and inexpensive manner to be suitable for numerous applications such as environmental monitoring, remediation, drug delivery, diagnosis, etc., through the modification of the catalyst resin and fuel, as desired.
Collapse
Affiliation(s)
- Adhikarige
Taniya Kaushalya Perera
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, N3.2−01- 20, 65 Nanyang Drive, Singapore 637460, Singapore
| | - Kewei Song
- Graduate
School of Creative Science and Engineering, Department of Modern Mechanical
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiangyi Meng
- Graduate
School of Creative Science and Engineering, Department of Modern Mechanical
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Wei Yang Wan
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, N3.2−01- 20, 65 Nanyang Drive, Singapore 637460, Singapore
| | - Shinjiro Umezu
- Graduate
School of Creative Science and Engineering, Department of Modern Mechanical
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hirotaka Sato
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, N3.2−01- 20, 65 Nanyang Drive, Singapore 637460, Singapore
| |
Collapse
|
3
|
Wang YC, Yu SE, Su YL, Cheng IC, Chuang YC, Chen YS, Chen JZ. NiFe 2O 4 Material on Carbon Paper as an Electrocatalyst for Alkaline Water Electrolysis Module. MICROMACHINES 2023; 15:62. [PMID: 38258181 PMCID: PMC10819468 DOI: 10.3390/mi15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
NiFe2O4 material is grown on carbon paper (CP) with the hydrothermal method for use as electrocatalysts in an alkaline electrolyzer. NiFe2O4 material is used as the anode and cathode catalysts (named NiFe(+)/NiFe(-) hereafter). The results are compared with those obtained using CP/NiFe as the anode and CP/Ru as the cathode (named NiFe)(+)/Ru(-) hereafter). During cell operation with NiFe(+)/Ru(-), the current density reaches 500 mA/cm2 at a cell voltage of 1.79 V, with a specific energy consumption of 4.9 kWh/m3 and an energy efficiency of 66.2%. In comparison, for NiFe(+)/NiFe(-), the current density reaches 500 mA/cm2 at a cell voltage of 2.23 V, with a specific energy consumption of 5.7 kWh/m3 and an energy efficiency of 56.6%. The Faradaic efficiency is 96-99%. With the current density fixed at 400 mA/cm2, after performing a test for 150 h, the cell voltage with NiFe(+)/Ru(-) increases by 0.167 V, whereas that with NiFe(+)/NiFe(-) decreases by only 0.010 V. Good, long-term stability is demonstrated.
Collapse
Affiliation(s)
- Ying-Chyi Wang
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan; (Y.-C.W.); (Y.-L.S.)
| | - Shuo-En Yu
- Graduate School of Advanced Technology, National Taiwan University, Taipei City 106319, Taiwan;
| | - Yu-Lun Su
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan; (Y.-C.W.); (Y.-L.S.)
| | - I-Chun Cheng
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 106319, Taiwan;
- Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei City 106319, Taiwan
| | - Yi-Cheng Chuang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi County 621301, Taiwan; (Y.-C.C.); (Y.-S.C.)
| | - Yong-Song Chen
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi County 621301, Taiwan; (Y.-C.C.); (Y.-S.C.)
| | - Jian-Zhang Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan; (Y.-C.W.); (Y.-L.S.)
- Graduate School of Advanced Technology, National Taiwan University, Taipei City 106319, Taiwan;
- Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei City 106319, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 106319, Taiwan
| |
Collapse
|
4
|
Yamazoe H. Multifunctional Micromachines Constructed by Combining Multiple Protein-Based Components with Different Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59145-59154. [PMID: 38078429 DOI: 10.1021/acsami.3c12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Untethered mobile micromachines have considerable potential to realize more effective and minimally invasive medicine. Although diverse medical micromachines have been reported over the past few decades, these machines were developed for performing only specific tasks and the functions imparted to them were limited to a few. Hence, the methodologies for imparting a wide variety of functions to machines have not been fully explored. In this study, a novel construction strategy for the multifunctional micromachines is presented, where a specific function can be added to the machine in one step by directly combining the protein-based component, possessing the biological function of constituent proteins, to an arbitrary position of the machine by using an inkjet printing technique. As a proof-of-concept demonstration, various types of machines were constructed by combining multiple components with different functions. These constructed machines successfully performed functions as diverse as enzyme-powered self-propulsion, collection of target objects, including the bilirubin and living cells, enzyme-mediated conversion of substrate molecules to different ones, magnetic guidance, and release of anti-inflammatory drug diapocynin. The study's progressive approach as well as multifunctional and biocompatible machines composed of proteins will profoundly impact the development of intelligent machines equipped with multiplex sophisticated functionalities.
Collapse
Affiliation(s)
- Hironori Yamazoe
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
5
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Zhang S, Zhu C, Huang W, Liu H, Yang M, Zeng X, Zhang Z, Liu J, Shi J, Hu Y, Shi X, Wang ZH. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release 2023; 360:514-527. [PMID: 37429360 DOI: 10.1016/j.jconrel.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Contemporary Tools for the Cure against Pernicious Microorganisms: Micro-/Nanorobots. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the most pressing concerns to global public health is the emergence of drug-resistant pathogenic microorganisms due to increased unconscious antibiotic usage. With the rising antibiotic resistance, existing antimicrobial agents lose their effectiveness over time. This indicates that newer and more effective antimicrobial agents and methods should be investigated. Many studies have shown that micro-/nanorobots exhibit promise in the treatment of microbial infections with their great properties, such as the intrinsic antimicrobial activities owing to their oxidative stress induction and metal ion release capabilities, and effective and autonomous delivery of antibiotics to the target area. In addition, they have multiple simultaneous mechanisms of action against microbes, which makes them remarkable in antimicrobial activity. This review focuses on the antimicrobial micro-/nanorobots and their strategies to impede biofilm formation, following a brief introduction of the latest advancements in micro-/nanorobots, and their implementations against various bacteria, and other microorganisms.
Collapse
|
8
|
Zhou Y, Dai L, Jiao N. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. MICROMACHINES 2022; 13:1068. [PMID: 35888885 PMCID: PMC9324494 DOI: 10.3390/mi13071068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
In recent years, microbubbles have been widely used in the field of microrobots due to their unique properties. Microbubbles can be easily produced and used as power sources or tools of microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of bubble applications in microrobotics including propulsion, micromanipulation, and microassembly. First, we introduce the diverse bubble generation and control methods. Then, we review and discuss how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss the prospects of microbubbles in microrobotics.
Collapse
Affiliation(s)
- Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Dai
- College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|