1
|
Hülsmann J, Fraune T, Dodawatta B, Reuter F, Beutner M, Beck V, Hackert-Oschätzchen M, Ohl CD, Bettenbrock K, Janiga G, Wippermann J, Wacker M. Integrated biophysical matching of bacterial nanocellulose coronary artery bypass grafts towards bioinspired artery typical functions. Sci Rep 2023; 13:18274. [PMID: 37880281 PMCID: PMC10600183 DOI: 10.1038/s41598-023-45451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Revascularization via coronary artery bypass grafting (CABG) to treat cardiovascular disease is established as one of the most important lifesaving surgical techniques worldwide. But the shortage in functionally self-adaptive autologous arteries leads to circumstances where the clinical reality must deal with fighting pathologies coming from the mismatching biophysical functionality of more available venous grafts. Synthetic biomaterial-based CABG grafts did not make it to the market yet, what is mostly due to technical hurdles in matching biophysical properties to the complex demands of the CABG niche. But bacterial Nanocellulose (BNC) Hydrogels derived by growing biofilms hold a naturally integrative character in function-giving properties by its freedom in designing form and intrinsic fiber architecture. In this study we use this integral to combine impacts on the luminal fiber matrix, biomechanical properties and the reciprocal stimulation of microtopography and induced flow patterns, to investigate biomimetic and artificial designs on their bio-functional effects. Therefore, we produced tubular BNC-hydrogels at distinctive designs, characterized the structural and biomechanical properties and subjected them to in vitro endothelial colonization in bioreactor assisted perfusion cultivation. Results showed clearly improved functional properties and gave an indication of successfully realized stimulation by artery-typical helical flow patterns.
Collapse
Affiliation(s)
- Jörn Hülsmann
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| | - Theresa Fraune
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Baratha Dodawatta
- Laboratory of Fluid Dynamics and Technical Flows, Otto von Guericke University, Magdeburg, Germany
| | - Fabian Reuter
- Department Soft Matter, Otto von Guericke University, Magdeburg, Germany
| | - Martin Beutner
- Chair of Manufacturing Technology with Focus Machining, Institute of Manufacturing Technology and Quality Management, Otto von Guericke University, Magdeburg, Germany
| | - Viktoria Beck
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Hackert-Oschätzchen
- Chair of Manufacturing Technology with Focus Machining, Institute of Manufacturing Technology and Quality Management, Otto von Guericke University, Magdeburg, Germany
| | - Claus Dieter Ohl
- Department Soft Matter, Otto von Guericke University, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Plank Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gabor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, Otto von Guericke University, Magdeburg, Germany
| | - Jens Wippermann
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Max Wacker
- Department for Cardiac Surgery, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
2
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
3
|
Jin W, Liu H, Li Z, Nie P, Zhao G, Cheng X, Zheng G, Yang X. Effect of Hydrogel Contact Angle on Wall Thickness of Artificial Blood Vessel. Int J Mol Sci 2022; 23:11114. [PMID: 36232417 PMCID: PMC9570380 DOI: 10.3390/ijms231911114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.
Collapse
Affiliation(s)
- Wenyu Jin
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Huanbao Liu
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Zihan Li
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Ping Nie
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guangxi Zhao
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Xiang Cheng
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Guangming Zheng
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Xianhai Yang
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| |
Collapse
|
4
|
Zakeri Z, Salehi R, Mahkam M, Rahbarghazi R, Abbasi F, Rezaei M. Electrospun POSS integrated poly(carbonate-urea)urethane provides appropriate surface and mechanical properties for the fabrication of small-diameter vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1415-1434. [PMID: 35380915 DOI: 10.1080/09205063.2022.2059741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study developed a platform for fabricating small-diameter vascular grafts using electrospun poly(carbonate-urea)urethane bonded with different concentrations of POSS nanocage. The characteristics of electrospun POSS-PCUUs were investigated by ATR-FTIR, 1HNMR, EDS, SEM, AFM, WCA, and DSC analyses. Besides, mechanical attributes such as tensile strength, modulus, elastic recovery, and inelastic behaviors were monitored. The survival rate and cellular attachment capacity were studied using human endothelial cells during a 7-day culture period. The results showed that electrospun nanofibers with 6 wt.% POSS-PCUU had better surface properties in terms of richness of POSS nanocage with notable improved mechanical strength and hysteresis loss properties (p < 0.05). The surface roughness of electrospun 6 wt.% POSS-PCUU reached 646 ± 10 nm with statistically significant differences compared to the control PCUU and groups containing 2, 4 wt.% POSS-PCUU (p < 0.05). The addition of 6 wt.% POSS increased the ultimate mechanical strength of nanofibers related to control PCUU and other groups (p < 0.05). The expansion of human endothelial cells on the 6 wt.% POSS-PCUU surface increased the viability reaching maximum levels on day 7 (p < 0.05). Immunofluorescence imaging using DAPI staining displayed the formation single-layer endothelial barrier at the luminal surface, indicating an appropriate cell-to-cell interaction.
Collapse
Affiliation(s)
- Ziba Zakeri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Rahbarghazi
- cStem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
5
|
Editorial for the Special Issue on Micro/Nano Devices for Blood Analysis, Volume II. MICROMACHINES 2022; 13:mi13020244. [PMID: 35208368 PMCID: PMC8878641 DOI: 10.3390/mi13020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
|