1
|
Wei Y, Abbasi SMT, Mehmood N, Li L, Qu F, Cheng G, Hu D, Ho YP, Yuan W, Ho HP. Deep-qGFP: A Generalist Deep Learning Assisted Pipeline for Accurate Quantification of Green Fluorescent Protein Labeled Biological Samples in Microreactors. SMALL METHODS 2024; 8:e2301293. [PMID: 38010980 DOI: 10.1002/smtd.202301293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Absolute quantification of biological samples provides precise numerical expression levels, enhancing accuracy, and performance for rare templates. Current methodologies, however, face challenges-flow cytometers are costly and complex, whereas fluorescence imaging, relying on software or manual counting, is time-consuming and error-prone. It is presented that Deep-qGFP, a deep learning-aided pipeline for the automated detection and classification of green fluorescent protein (GFP) labeled microreactors, enables real-time absolute quantification. This approach achieves an accuracy of 96.23% and accurately measures the sizes and occupancy status of microreactors using standard laboratory fluorescence microscopes, providing precise template concentrations. Deep-qGFP demonstrates remarkable speed, quantifying over 2000 microreactors across ten images in just 2.5 seconds, with a dynamic range of 56.52-1569.43 copies µL-1 . The method demonstrates impressive generalization capabilities, successfully applied to various GFP-labeling scenarios, including droplet-based, microwell-based, and agarose-based applications. Notably, Deep-qGFP is the first all-in-one image analysis algorithm successfully implemented in droplet digital polymerase chain reaction (PCR), microwell digital PCR, droplet single-cell sequencing, agarose digital PCR, and bacterial quantification, without requiring transfer learning, modifications, or retraining. This makes Deep-qGFP readily applicable in biomedical laboratories and holds potential for broader clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Syed Muhammad Tariq Abbasi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Nawaz Mehmood
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Luoquan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Fuyang Qu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Dehua Hu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
- Centre for Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Shatin, Hong Kong SAR, 999 077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China
| |
Collapse
|
2
|
Lai YK, Kao YT, Hess JF, Calabrese S, von Stetten F, Paust N. Interfacing centrifugal microfluidics with linear-oriented 8-tube strips and multichannel pipettes for increased throughput of digital assays. LAB ON A CHIP 2023; 23:2623-2632. [PMID: 37158238 DOI: 10.1039/d3lc00339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a centrifugal microfluidic cartridge for the eight-fold parallel generation of monodisperse water-in-oil droplets using standard laboratory equipment. The key element is interfacing centrifugal microfluidics with its design based on polar coordinates to the linear structures of standard high-throughput laboratory automation. Centrifugal step emulsification is used to simultaneously generate droplets from eight samples directly into standard 200 μl PCR 8-tube strips. To ensure minimal manual liquid handling, the design of the inlets allows the user to load the samples and the oil via a standard multichannel pipette. Simulation-based design of the cartridge ensures that the performance is consistent in each droplet generation unit despite the varying radial positions that originate from the interface to the linear oriented PCR 8-tube strip and from the integration of linear oriented inlet holes for the multichannel pipettes. Within 10 minutes, sample volumes of 50 μl per droplet generation unit are emulsified at a fixed rotation speed of 960 rpm into 1.47 × 105 monodisperse droplets with a mean diameter of 86 μm. The overall coefficient of variation (CV) of the droplet diameter was below 4%. Feasibility is demonstrated by an exemplary digital droplet polymerase chain reaction (ddPCR) assay which showed high linearity (R2 ≥ 0.999) across all of the eight tubes of the strip.
Collapse
Affiliation(s)
- Yu-Kai Lai
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Yu-Ting Kao
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Jacob Friedrich Hess
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Silvia Calabrese
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
3
|
Zhang Z, Cheng Y, Li X, Chen L, Xu R, Qi X, Shao Y, Gao Z, Zhu M. Bent-Capillary-Centrifugal-Driven Monodisperse Droplet Generator with Its Application for Digital LAMP Assay. Anal Chem 2023; 95:3028-3036. [PMID: 36688612 DOI: 10.1021/acs.analchem.2c05110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We developed a bent-capillary-centrifugal-driven (BCCD) monodisperse droplet generator, which could achieve a perfect combination of driving and segmentation for the dispersed phase only using a rotating bent capillary immersed in the continuous phase (mineral oil). The sample could flow continuously to the bent-capillary outlet to form the droplet precursors, which were segmented into homogeneous droplets in the continuous phase. Through the investigation of influence factors on droplet size and stability, we found that the droplet size could be conveniently controlled by the rotational speed of the bent capillary. The droplet volumes could be adjusted with the range from 34 pL to 1 μL, and the coefficient variations (CVs) were less than 3%. Meanwhile, the BCCD droplet generator could realize the controllable droplet output with a high-efficiency sample utilization of 99.75 ± 1.15%, which offered a significant advantage in reducing the waste of precious samples in the droplet generation process. We validated this system with a digital loop-mediated isothermal amplification (dLAMP) assay for the absolute quantification of Mycobacterium tuberculosis complex nucleic acids. The results demonstrated that the BCCD droplet generator was easy to build, was of low cost, and was convenient to operate, as well as avoided sample loss and cross-contamination by coupling with a 96-well plate. Overall, the present platform, as a simple chip-free droplet generator, will provide an especially valuable droplet generation solution for biochemical applications based on droplets.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Yongqiang Cheng
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Xiaotong Li
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Longyu Chen
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Ranran Xu
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Xiaoxiao Qi
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Yifan Shao
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Zhenhui Gao
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| | - Meijia Zhu
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province266237, China
| |
Collapse
|