1
|
Pylaev TE, Avdeeva ES, Khlebtsov BN, Lomova MV, Khlebtsov NG. High-throughput cell optoporation system based on Au nanoparticle layers mediated by resonant irradiation for precise and controllable gene delivery. Sci Rep 2024; 14:3044. [PMID: 38321124 PMCID: PMC10847436 DOI: 10.1038/s41598-024-53126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
The development of approaches based on genetically modified cells is accompanied by a constant intensive search for new effective and safe delivery systems and the study of existing ones. Recently, we developed a new plasmonic nanoparticle layers-mediated optoporation system that can be proposed for precisely controlled, high-performance laser transfection compatible with broad types of cells and delivered objects of interest. The main goal of the present study is to demonstrate the broad possibilities and advantages of our system for optoporation of several mammalian cells, classified as "easy-to-transfect" cells, namely HeLa and CHO lines, and "hard-to-transfect" cells, namely A431 and RAW 264.7 cells. We show the efficient delivery of various sized cargo molecules: from small molecular dyes propidium iodide (PI) with molecular mass 700 Da, control plasmids (3-10 kb) to fluorophore-labeled dextranes with masses ranging from 10 kDa up to 100 kDa. The performance of optoporation was investigated for two types of laser sources, 800-nm continuous-wave laser, and 1064-nm ns pulsed laser. We provided a comparative study between our system and commercial agent Lipofectamine for transient transfection and stable transfection of HeLa cells with plasmids encoding fluorescent proteins. The quantitative data analysis using flow cytometry, Alamar blue viability assay, and direct fluorescence microscopy revealed higher optoporation efficacy for hard-to-transfect A431 cells and Raw 264.7 cells than lipofection efficacy. Finally, we demonstrated the optoporation performance at the single-cell level by successful delivering PI to the individual CHO cells with revealed high viability for at least 72 h post-irradiation.
Collapse
Affiliation(s)
- T E Pylaev
- Saratov Medical State University N.a. V.I. Razumovsky, 112 Ulitsa Bolshaya Kazachya, Saratov, Russia, 410012.
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049.
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov, Russia, 410012.
| | - E S Avdeeva
- Saratov Medical State University N.a. V.I. Razumovsky, 112 Ulitsa Bolshaya Kazachya, Saratov, Russia, 410012
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049
| | - M V Lomova
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov, Russia, 410012
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences, 13 Prospect Entuziastov, Saratov, Russia, 410049
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov, Russia, 410012
| |
Collapse
|
2
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|