1
|
Shrestha DK, Jaishi DR, Ojha I, Ojha DR, Pathak I, Magar AB, Parajuli N, Sharma KR. Plant assisted synthesis of silver nanoparticles using Persicaria perfoliata (L.) for antioxidant, antibacterial, and anticancer properties. Heliyon 2024; 10:e40543. [PMID: 39660180 PMCID: PMC11629186 DOI: 10.1016/j.heliyon.2024.e40543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Persicaria perfoliata (L.) is an herbaceous medicinal plant belonging to the Polygonaceae family. The plant is distributed in Nepal, India, Japan, China, Russia, and Korea. The present study involved the analysis of plant secondary metabolites, synthesis of silver nanoparticles (Ag NPs) using the plant, characterization, and exploration of antioxidant, antidiabetic, antibacterial, and cytotoxic activities. Among six different solvent extracts, the methanol extract displayed the highest total phenolic content (TPC) and total flavonoid content (TFC) of 68.61 ± 0.57 mg GAE/g and 40.69 ± 5.0 mg QE/g respectively. Ag NPs and hexane extract displayed the potential antioxidant activity of IC50 69.40 ± 0.13 and 144.50 ± 1.36 μg/mL in the DPPH assay. The α-amylase inhibition shown by an aqueous extract and the synthesized Ag NPs IC50 of 1188.83 ± 33.52 and 1369.30 ± 46.86 μg/mL respectively. In antibacterial activity, the highest ZOI of 16 mm was displayed by Ag NPs against Klebsiella pneumoniae followed by a ZOI of 11 mm for methanol extract against Shigella sonnei. Similarly, the lowest MIC and MBC of 0.78125 and 1.5625 mg/mL were recorded for both Ag NPs and methanol extract against Staphylococcus aureus. Aqueous extract and Ag NPs did not display significant toxicity against brine shrimp nauplii. Ag NPs displayed an IC50 of 251.86 ± 58.90 μg/mL against HeLa cell lines. Biosynthesized Ag NPs showed a distinct peak at 409 nm in UV-visible spectra. FTIR analysis revealed the involvement of different functional groups of the organic compounds present in plant extract as reducing, capping, and stabilizing agents in the synthesis of Ag NPs. XRD analysis confirmed the crystal structure of Ag NPs, whereas the average grain size of 44.28 nm was determined by FE-SEM analysis. EDX spectra established the elemental composition of Ag NPs. The present study shows the synthesized Ag NPs using plant extract impart the potential biological activities as compared to that of the crude extract.
Collapse
Affiliation(s)
- Deepak Kumar Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry, Butwal Multiple Campus, Tribhuvan University, Nepal
| | - Dipak Raj Jaishi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Indra Ojha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Dinesh Raj Ojha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ishwor Pathak
- Department of Chemistry, Amrit Campus, Tribhuvan University, Nepal
| | - Akash Budha Magar
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
2
|
Subramani K, Wutthithien P, Saha R, Lindblad P, Incharoensakdi A. Characterization and potentiality of plant-derived silver nanoparticles for enhancement of biomass and hydrogen production in Chlorella sp. under nitrogen deprived condition. CHEMOSPHERE 2024; 361:142514. [PMID: 38830468 DOI: 10.1016/j.chemosphere.2024.142514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Energy is a crucial entity for the development and it has various alternative forms of energy sources. Recently, the synthesis of nanoparticles using benign biocatalyst has attracted increased attention. In this study, silver nanoparticles were synthesized and characterized using Azadirachta indica plant-derived phytochemical as the reducing agent. Biomass of the microalga Chlorella sp. cultivated in BG11 medium increased after exposure to low concentrations of up to 0.48 mg L-1 AgNPs. In addition, algal cells treated with 0.24 mg L-1 AgNPs and cultivated in BG110 medium which contained no nitrogen source showed the highest hydrogen yield of 10.8 mmol L-1, whereas the untreated cells under the same conditions showed very low hydrogen yield of 0.003 mmol L-1. The enhanced hydrogen production observed in the treated cells was consistent with an increase in hydrogenase activity. Treatment of BG110 grown cells with low concentration of green synthesized AgNPs at 0.24 mg L-1 enhanced hydrogenase activity with a 5-fold increase of enzyme activity compared to untreated BG110 grown cells. In addition, to improve photolytic water splitting efficiency for hydrogen production, cells treated with AgNPs at 0.24 mg L-1 showed highest oxygen evolution signifying improvement in photosynthesis. The silver nanoparticles synthesized using phytochemicals derived from plant enhanced both microalgal biomass and hydrogen production with an added advantage of CO2 reduction which could be achieved due to an increase in biomass. Hence, treating microalgae with nanoparticles provided a promising strategy to reduce the atmospheric carbon dioxide as well as increasing production of hydrogen as clean energy.
Collapse
Affiliation(s)
- Karthik Subramani
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand
| | - Palaya Wutthithien
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand
| | - Raunak Saha
- Centre for Nanoscience and Technology, K S Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu, India
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 103330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
3
|
Oćwieja M, Barbasz A, Wasilewska M, Smoleń P, Duraczyńska D, Napruszewska BD, Kozak M, Węgrzynowicz A. Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles. Molecules 2024; 29:3629. [PMID: 39125033 PMCID: PMC11314351 DOI: 10.3390/molecules29153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity.
Collapse
Affiliation(s)
- Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, 30-084 Krakow, Poland;
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Piotr Smoleń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Bogna D. Napruszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.W.); (P.S.); (D.D.); (B.D.N.)
| | - Mikołaj Kozak
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Adam Węgrzynowicz
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| |
Collapse
|
4
|
Tahir H, Rashid F, Ali S, Summer M, Afzal M. Synthesis, Characterization, Phytochemistry, and Therapeutic Potential of Azadirachta indica Conjugated Silver Nanoparticles: A Comprehensive Study on Antidiabetic and Antioxidant Properties. Biol Trace Elem Res 2024:10.1007/s12011-024-04293-3. [PMID: 38985237 DOI: 10.1007/s12011-024-04293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Nanotechnology has become a major topic of study, particularly in the medical and health domains. Because nanomedicine has a higher recovery rate than other conventional drugs, it has attracted more attention. Green synthesis is the most efficient and sustainable method of creating nanoparticles. The current work used ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction to thoroughly characterize the synthesized silver nanoparticles (AgNPs) from Azadirachta indica leaf extract. Characterization confirmed the synthesis of the AgNPs along with the possible linkage of the phytochemicals with the silver as well as the quantitative analysis and nature of NPs. The antioxidant activity of AgNPs and neem extract was measured by the 2,2-diphenyl-1-picrylhydrazyl assay using various concentrations (20, 40, 60, 80, and 100 µg/ml). Additionally, using diabetic mice that had been given alloxan, the in vivo antidiabetic potential of biosynthesized AgNPs was assessed. Eight groups of mice were used to assess the antidiabetic activity: one control group and seven experimental groups (untreated, extract-treated, AgNPs at low and high doses, standard drug, low dose of AgNPs + drug, and high dose of AgNPs + drug). At days 0, 7, 14, 21, and 28, blood glucose levels and body weight were measured. After 28 days, the mice were dissected, and the liver, kidney, and pancreas were examined histologically. The results depicted that the AgNPs showed higher (significant) radical scavenging activity (IC50 = 35.2 µg/ml) than extract (IC50 = 93.0 µg/ml) and ascorbic acid (IC50 = 64.6 µg/ml). The outcomes demonstrated that biosynthesized AgNPs had a great deal of promise as an antidiabetic agent and exhibited remarkable effects in diabetic mice given AgNPs, extract, and drug. Remarkable improvement in the body weight and blood glucose level of mice treated with high doses of AgNPs and drug was observed. The body weight and blood glucose level of diabetic mice treated with a high dose of AgNPs + standard drug showed significant improvement, going from 28.7 ± 0.2 to 35.6 ± 0.3 g and 248 ± 0.3 to 109 ± 0.1 mg/dl, respectively. Significant regeneration was also observed in the histomorphology of the kidney, liver's central vein, and islets of Langerhans after treatment with biosynthesized AgNPs. Diabetic mice given a high dose of AgNPs and drug displayed architecture of the kidney, liver, and pancreas that was nearly identical to that of the control group. According to the current research, biosynthesized AgNPs have strong antioxidant and antidiabetic potential and may eventually provide a less expensive option for the treatment of diabetes.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Misha Afzal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
5
|
Naven Kumar RK, Sivalingam AM, Alex A, Brahma N. Pharmacological Effect of Copper Oxide Nanoparticles of Azadirachta indica Leaf Extract and Application for its Antibacterial Properties. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1249-S1255. [PMID: 38882889 PMCID: PMC11174175 DOI: 10.4103/jpbs.jpbs_562_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 06/18/2024] Open
Abstract
Nanoparticles prepared from bio-reduction agents are of keen interest to researchers around the globe due to their ability to mitigate the harmful effects of chemicals. In this regard, the present study aims to synthesize copper oxide nanoparticles (CuO NPs). CuNPs show a characteristic absorption peak at 347 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26-56.66 nm. The crystallite size measured by using XRD was found to be within a range of 23.38-46.64 nm for ginger-doped CuO and 26-56 nm for garlic-doped CuO. The X-ray diffraction analysis shows the crystalline structure of copper nanoparticles with prominent peaks. Bragg's reflection of copper nanoparticles shows diffraction peaks around 2θ =43.4°, 50.3°, and 74.39°, representing [111], [200], and [220] crystallographic planes of face-centered cubic (fcc). The synthesized CuO NPs tested antibacterial properties against various strains of microorganisms, including Escherichia coli, 25 μg/mL 2.3 ± 0.21 and 100 μg/mL 6.5 ± 0.17, Staphylococcus aureus, 25 μg/mL 2.3 ± 0.29 and 100 μg/mL 11.5 ± 1.17, Streptococcus mutans, 25 μg/mL 01.05 ± 0.21 and 100 μg/mL 15.8 ± 0.17, Enterococcus faecalis). The short novelty of Azadirachta indica lies in its potential relevance to human health, as it has been found to possess bioactive compounds with various medicinal properties, such as antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising natural resource for therapeutic applications.
Collapse
Affiliation(s)
- R K Naven Kumar
- Natural Products and Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai Tamil Nadu, India
| | - Azhagu Madhavan Sivalingam
- Natural Products and Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai Tamil Nadu, India
| | - Arockia Alex
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai Tamil Nadu, India
| | - Neha Brahma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai Tamil Nadu, India
| |
Collapse
|
6
|
Shireen Akhter Jahan Q, Sultana Z, Ud-Daula MA, Md. Ashikuzzaman, Md. Shamim Reja, Rahman MM, Khaton A, Tang MAK, Rahman MS, Hossain Md. Faruquee, Lee SJ, Rahman AM. Optimization of green silver nanoparticles as nanofungicides for management of rice bakanae disease. Heliyon 2024; 10:e27579. [PMID: 38533066 PMCID: PMC10963222 DOI: 10.1016/j.heliyon.2024.e27579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Rice bakanae, a devastating seed-borne disease caused by Fusarium species requires a more attractive and eco-friendly management strategy. The optimization of plant-mediated silver nanoparticles (AgNPs) as nanofungicides by targeting Fusarium species may be a rational approach. In this study, Azadirachta indica leaf aqueous extract-based AgNPs (AiLAE-AgNPs) were synthesized through the optimization of three reaction parameters: A. indica leaf amount, plant extract-to-AgNO3 ratio (reactant ratio), and incubation time. The optimized green AgNPs were characterized using ultraviolet-visible light (UV-Vis) spectroscopy, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and powder X-ray diffraction (XRD) techniques. The optimal conditions for producing spherical, unique, and diminutive-sized AgNPs ranging from 4 to 27 nm, with an average size of 15 nm, were 2 g AiLAE at a 1:19 ratio (extract-to-AgNO3) and incubated for 4 h. Fusarium isolates collected from infected soils and identified as F. fujikuroi (40) and F. proliferatum (58 and 65) by PCR were used for seed infestation. The AgNPs exhibited concentration-dependent mycelial growth inhibition with EC50 values ranging from 2.95 to 5.50 μg/mL. The AgNPs displayed exposure time-dependent seed disinfectant potential (complete CFU reduction in F. fujikuroi (40) and F. proliferatum (58) was observed at a concentration of 17.24 μg/mL). The optimized green AgNPs were non-toxic to germinating seeds, and completely cured bakanae under net-house conditions, suggesting their great nano-fungicidal potency for food security and sustainable agriculture.
Collapse
Affiliation(s)
| | - Ziniya Sultana
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Asad Ud-Daula
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Ashikuzzaman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Shamim Reja
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Mahfuzur Rahman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Amina Khaton
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Md. Abul Kashem Tang
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - M. Safiur Rahman
- Chemistry Division, Atomic Energy Centre (AECD), Bangladesh Atomic Energy Commission, Bangladesh
| | - Hossain Md. Faruquee
- Department of Biotechnology and Genetical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Seung Ju Lee
- Department of Food Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - A.T.M. Mijanur Rahman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
7
|
teymoori M, Pourshamsian K. A new method in the production of protective sheets against X-ray radiation. Heliyon 2024; 10:e23301. [PMID: 38205301 PMCID: PMC10777381 DOI: 10.1016/j.heliyon.2023.e23301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Today, the use of X-rays in diagnosing and sometimes treating patients is inevitable. Despite the many benefits of using X-rays in medical and other sciences, the harmful effects of this radiation on human tissue should not be neglected. One of the best ways to prevent the harmful effects of X-rays on the human body is to use appropriate covers against these rays. It seems that it is necessary to find effective particles to weaken X-rays and choose a suitable substrate with high mechanical resistance to scatter particles in it. In this study, the synthesis of SnO2 nanoparticles from SnCl2.2H2O precursor and BaSO4 nanoparticles from BaCl2.2H2O precursor using neem tree extract (Azadirachta indica) as a reducing and stabilizing agent is reported. After the synthesis of nanoparticles, their structure was investigated by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Then the desired composite and nanocomposite were prepared in the polymer substrate. The sheets were prepared using an extruder and then a hot hydraulic press. The output sheets had a thickness of 1 mm. The structural characteristics of the produced sheets such as surface morphology, density of prepared composites, mechanical properties, thermal gravimetric analysis and retention of loaded particles after three times washes were investigated. The X-ray attenuation capability of each sample was evaluated by calculating the linear attenuation coefficient for each prepared sample. The results show that all sheets filled with tin and barium micro and nano particles have more X-ray attenuation capabilities than pure polymer. Among the prepared sheets, the nanocomposite prepared from low-density polyethylene (77 %) + SnO2 (10 %) + BaSO4 (10 %) + multi-walled carbon nanotubes (3 %) showed the highest X-ray attenuation.
Collapse
Affiliation(s)
- Maryam teymoori
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Khalil Pourshamsian
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
8
|
Alsubhi NS, Alharbi NS, Felimban AI. Optimized Green Synthesis and Anticancer Potential of Silver Nanoparticles Using Juniperus procera Extract Against Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Silver nanoparticles (AgNPs) have been considered promising candidates for medical practices in various fields. This study proposed an efficient, economical, uncomplicated, and reliable method to synthesize AgNPs utilizing leaf and fruit extracts of Juniperus procera (J. procera)
as capping, reducing, and stabilizing agents. The study includes optimizing the green synthesis conditions to produce stable AgNPs with high yields, acceptable particle size, and shape, hence, AgNPs may be used for different medical purposes through the improvement of their properties. Several
spectroscopic and other analyses performed characterization of the fabricated AgNPs, and the results show stable and spherical AgNPs between 14 and 18 nm in size. The study also evaluated the anticancer activities of the biosynthesized AgNPs using J. procera fruit and leaf extracts
against in vitro lung cancer A549 and H1975 cells. The results demonstrate the high toxicity of the biosynthesized AgNPs against in vitro lung cancer cells, supporting therapeutic and biomedical applications of AgNPs.
Collapse
Affiliation(s)
- Nehad S. Alsubhi
- Department of Biology, Collage of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Njud S. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Afnan I. Felimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|