1
|
Hollanda LR, de Souza JAB, Dotto GL, Foletto EL, Chiavone-Filho O. Iron-bearing mining reject as an alternative and effective catalyst for photo-Fenton oxidation of phenol in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21291-21301. [PMID: 38383932 DOI: 10.1007/s11356-024-32513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
In this work, iron-bearing mining reject was employed as an alternative and potential low-cost catalyst to degrade phenol in water by photo-Fenton strategy. Various techniques, including SEM-EDS, BET, FTIR, and XRD, were applied to evaluate the material's properties. Process parameters such as hydrogen peroxide concentration, catalyst dosage, and pH were studied to determine the optimum reaction conditions ([catalyst] = 0.75 g L-1, [H2O2] = 7.5 mM, and pH = 3). Phenol degradation and mineralization efficiencies at 180 and 300 min were 96.5 and 78%, respectively. These satisfactory results can be associated with the iron amount present in the waste sample. Furthermore, the material showed high catalytic activity and negligible iron leaching even after the fourth reuse cycle. The degradation behavior of phenol in water was well represented by a kinetic model based on the Fermi function. The iron-bearing mining reject can be considered a potential photo-Fenton catalyst for phenol degradation in wastewater.
Collapse
Affiliation(s)
- Luana Rabelo Hollanda
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| | | | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| |
Collapse
|
2
|
Umar A, Akbar S, Kumar R, Ahmed F, Ansari SA, Ibrahim AA, Alhamami MA, Almehbad N, Algadi H, Almas T, Zeng W. Unveiling the potential of PANI@MnO 2@rGO ternary nanocomposite in energy storage and gas sensing. CHEMOSPHERE 2024; 349:140657. [PMID: 38000555 DOI: 10.1016/j.chemosphere.2023.140657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.
Collapse
Affiliation(s)
- Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Punjab, 144205, India
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box-400, Al-Ahsa, 31982, Saudi Arabia; Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi-110025
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, P.O. Box-400, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Mohsen A Alhamami
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Noura Almehbad
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Hassan Algadi
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Tubia Almas
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Kumar SA, Rosaline DR, Foletto EL, Dotto GL, Inbanathan SSR, Muralidharan G. Application of green-synthesized cadmium oxide nanofibers and cadmium oxide/graphene nanosheet nanocomposites as alternative and efficient photocatalysts for methylene blue removal from aqueous matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117390-117403. [PMID: 37870670 DOI: 10.1007/s11356-023-30425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
For the first time, cadmium oxide (CdO) nanofibers (NFs) and graphene nanosheet (GNS)-doped CdO nanocomposites (NCs) have been synthesized by a simple green route using green tea (Camellia sinensis) extract, for subsequent application as photocatalysts for methylene blue (MB) removal from an aqueous matrix. In addition, the materials were tested as working electrodes for supercapacitors. The prepared samples were analyzed by FESEM, UV-Vis spectroscopy, FTIR, and X-ray diffraction (XRD). FESEM revealed that the obtained NPs and NCs show fiber-shaped nanostructure. FTIR confirmed the presence of biomolecules on CdO and carbon compounds on CdO/GNS, while XRD exhibited the cubic crystalline structure of obtained NPs and NCs. The Rietveld refinement using XRD data was performed to ascertain the crystallographic characteristics of the produced samples and look into lattice imperfections. UV-Vis spectroscopy evaluated the optical bandgap energies of CdO and CdO/GNS NCs. The CdO/GNS NCs demonstrated a fast cleavage of the dye molecule under UV irradiation, resulting in 97% removal in 120 min. In addition, CdO/GNS NCs showed remarkable chemical stability as an electrode material, with a high specific capacitance of 231 F g-1 at a scan rate of 25 mV s-1. These observed NCs characteristics are higher when compared to pristine CdO NPs. Finally, we found that the investigated NCs showed enhanced multifunctional properties, such as photocatalytic and supercapacitor characteristics, which can be useful in practical applications.
Collapse
Affiliation(s)
- Sundararajan Ashok Kumar
- Post Graduate and Research Department of Physics, The American College, Madurai, Tamil Na du, 625002, India
| | - Daniel Rani Rosaline
- Post Graduate and Research Department of Chemistry, Lady Doak College, Madurai, Tamil Na du, 625002, India
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | | | - Gopalan Muralidharan
- Department of Physics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul, Tamil Na du, 624302, India
| |
Collapse
|