Cao HX, Nguyen VD, Park JO, Choi E, Kang B. Acoustic Actuators for the Manipulation of Micro/Nanorobots: State-of-the-Art and Future Outlooks.
MICROMACHINES 2024;
15:186. [PMID:
38398914 PMCID:
PMC10890471 DOI:
10.3390/mi15020186]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Compared to other actuating methods, acoustic actuators offer the distinctive capability of the contactless manipulation of small objects, such as microscale and nanoscale robots. Furthermore, they have the ability to penetrate the skin, allowing for the trapping and manipulation of micro/nanorobots that carry therapeutic agents in diverse media. In this review, we summarize the current progress in using acoustic actuators for the manipulation of micro/nanorobots used in various biomedical applications. First, we introduce the actuating method of using acoustic waves to manipulate objects, including the principle of operation and different types of acoustic actuators that are usually employed. Then, applications involving manipulating different types of devices are reviewed, including bubble-based microrobots, bubble-free robots, biohybrid microrobots, and nanorobots. Finally, we discuss the challenges and future perspectives for the development of the field.
Collapse