1
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Yi L, Yu L, Chen S, Huang D, Yang C, Deng H, Hu Y, Wang H, Wen Z, Wang Y, Tu Y. The regulatory mechanisms of cerium oxide nanoparticles in oxidative stress and emerging applications in refractory wound care. Front Pharmacol 2024; 15:1439960. [PMID: 39156103 PMCID: PMC11327095 DOI: 10.3389/fphar.2024.1439960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide nanoparticles (CeNPs) have emerged as a potent therapeutic agent in the realm of wound healing, attributing their efficacy predominantly to their exceptional antioxidant properties. Mimicking the activity of endogenous antioxidant enzymes, CeNPs alleviate oxidative stress and curtail the generation of inflammatory mediators, thus expediting the wound healing process. Their application spans various disease models, showcasing therapeutic potential in treating inflammatory responses and infections, particularly in oxidative stress-induced chronic wounds such as diabetic ulcers, radiation-induced skin injuries, and psoriasis. Despite the promising advancements in laboratory studies, the clinical translation of CeNPs is challenged by several factors, including biocompatibility, toxicity, effective drug delivery, and the development of multifunctional compounds. Addressing these challenges necessitates advancements in CeNP synthesis and functionalization, novel nano delivery systems, and comprehensive bio effectiveness and safety evaluations. This paper reviews the progress of CeNPs in wound healing, highlighting their mechanisms, applications, challenges, and future perspectives in clinical therapeutics.
Collapse
Affiliation(s)
- Lijun Yi
- Department of General Surgery, Luzhou People’s Hospital, Luzhou, China
| | - Lijian Yu
- Department of General Surgery, Luzhou People’s Hospital, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Delong Huang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Cheng Yang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Hairui Deng
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Yiheng Hu
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Hui Wang
- People’s Hospital of Nanjiang, Bazhong, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Luzhou, China
| | - Yu Tu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Aljamal D, Iyengar PS, Nguyen TT. Translational Challenges in Drug Therapy and Delivery Systems for Treating Chronic Lower Extremity Wounds. Pharmaceutics 2024; 16:750. [PMID: 38931872 PMCID: PMC11207742 DOI: 10.3390/pharmaceutics16060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Despite several promising preclinical studies performed over the past two decades, there remains a paucity of market-approved drugs to treat chronic lower extremity wounds in humans. This translational gap challenges our understanding of human chronic lower extremity wounds and the design of wound treatments. Current targeted drug treatments and delivery systems for lower extremity wounds rely heavily on preclinical animal models meant to mimic human chronic wounds. However, there are several key differences between animal preclinical wound models and the human chronic wound microenvironment, which can impact the design of targeted drug treatments and delivery systems. To explore these differences, this review delves into recent new drug technologies and delivery systems designed to address the chronic wound microenvironment. It also highlights preclinical models used to test drug treatments specific for the wound microenvironments of lower extremity diabetic, venous, ischemic, and burn wounds. We further discuss key differences between preclinical wound models and human chronic wounds that may impact successful translational drug treatment design.
Collapse
Affiliation(s)
- Danny Aljamal
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Priya S. Iyengar
- Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA; (D.A.); (P.S.I.)
| | - Tammy T. Nguyen
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Massachusetts, Worcester, MA 01655, USA
- Diabetes Center of Excellence, University of Massachusetts, Worcester, MA 01655, USA
| |
Collapse
|
4
|
Villarreal-Gómez LJ, Cornejo-Bravo JM, Fonthal F. Editorial for the Special Issue on Biomaterials, Biodevices and Tissue Engineering. MICROMACHINES 2024; 15:604. [PMID: 38793177 PMCID: PMC11122819 DOI: 10.3390/mi15050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Biomaterials, biodevices, and tissue engineering represent the cutting edge of medical science, promising revolutionary solutions to some of humanity's most pressing health challenges (Figure 1) [...].
Collapse
Affiliation(s)
- Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Mexico
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana 22300, Mexico;
| | - Faruk Fonthal
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia;
| |
Collapse
|
5
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Yang Y, Bustani GS, Alawsi T, Altalbawy FMA, Kareem AK, Gupta J, Zhu P, Hjazi A, Alawadi AH, Mustafa YF. The cardioprotective effects of cerium oxide nanoparticles against the poisoning generated by aluminum phosphide pesticide: Controlling oxidative stress and mitochondrial damage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105701. [PMID: 38072556 DOI: 10.1016/j.pestbp.2023.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Aluminum phosphide (AlP) is a well-known toxic compound used as an agricultural pesticide to prevent insect damage to stored crops. However, even if just a small amount was consumed, it caused lasting harm to the human body and, in acute concentrations, death. The current study employed cerium oxide nanoparticles (CeO2 NPs) to reduce oxidative stress and various harmful outcomes of AlP poisoning. METHODS Following finding effective concentrations of CeO2 NPs via MTT assay, Human Cardiac Myocyte (HCM) cells were pre-treated with CeO2 NPs for 24 h. After that, they were exposed to 2.36 μM AlP. The activity of oxidative stress and mitochondrial biomarkers, including mitochondrial swelling, mitochondrial membrane potential, and cytochrome c release, were evaluated in HCM cells. Finally, the population of apoptotic and necrotic cells was assessed via flow cytometry. RESULTS After 24 h, data revealed that all tested concentrations of CeO2 NPs were safe, and 25 and 50 μM of that were selected as effective concentrations. Oxidative stress markers (malondialdehyde, protein carbonyl, superoxide dismutase, and catalase) showed that CeO2 NPs could successfully decrease AlP poisoning due to their antioxidant characteristics. Mitochondrial markers were also recovered by pre-treatment of HCM cells with CeO2 NPs. Furthermore, pre-treating with CeO2 NPs could compensate for the reduction of live cells with AlP and cause a diminishing in the population of early and late apoptotic cells. CONCLUSION As a result, it is evident that CeO2 NPs, through the recovery of oxidative stress and mitochondrial damages caused by AlP, reduce apoptosis and have therapeutic potentials on HCM cells.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Taif Alawsi
- Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
| | - Ali Kamil Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Ping Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
7
|
Ha HA, Al-Ansari MM, Al-Dahmash ND, Krishnan R, Shanmuganathan R. In vitro analyses of cerium oxide nanoparticles in degrading anthracene/fluorene and revealing the antibiofilm activity against bacteria and fungi. CHEMOSPHERE 2023; 345:140487. [PMID: 37875217 DOI: 10.1016/j.chemosphere.2023.140487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
A sol-gel method was used to synthesize the cerium dioxide nanoparticles. The nanoparticles formed were then characterized with UV-visible spectrophotometry, Fourier Transform Infrared Spectrophotometer (FTIR), SEM-EDAX, XRD, and Dynamic Light Scattering (DLS). The UV-visible absorbance at 282 nm and characteristic peak at 600-4000 cm-1 provided insight into the formation of cerium dioxide nanoparticles using a chemical method. SEM analysis and EDAX analysis confirmed nanoparticle formation and elements within the nanoparticles based on their irregular morphology. The hydrodynamic size obtained from the DLS analysis was 178.4 nm and the polydispersity was 0.275 nm. Furthermore, XRD results confirmed the crystalline nature of cerium dioxide nanoparticles. Using batch adsorption as a method, the effect of concentration of Polycyclic Aromatic Hydrocarbons (PAH), adsorbent concentration, pH, and irradiation source was investigated. Under UV light conditions, 10 μg/mL cerium dioxide nanoparticle at pH 5 degraded 2 μg/mL of PAH (anthracene and fluorene). Consequently, the synthesized cerium dioxide nanoparticles were effective photocatalysts. For anthracene and fluorene, kinetic studies showed the degradation process followed pseudo-second-order kinetics and Freundlich isotherms. Cerium oxide also exhibited significant antimicrobial and antibiofilm activity against bacteria and fungi. As a result, the cerium dioxide nanoparticle has proved to be a highly effective photocatalytic tool for the degradation of PAHs and exhibits strong antimicrobial activity.
Collapse
Affiliation(s)
- Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA
| | - Rajasree Shanmuganathan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical And Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, India.
| |
Collapse
|
8
|
Zhao R, Zhao C, Wan Y, Majid M, Abbas SQ, Wang Y. In vitro and in vivo evaluation of alginate hydrogel-based wound dressing loaded with green chemistry cerium oxide nanoparticles. Front Chem 2023; 11:1298808. [PMID: 38075491 PMCID: PMC10701403 DOI: 10.3389/fchem.2023.1298808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 02/17/2024] Open
Abstract
Interactive wound dressings have displayed promising outcomes in enhancing the wound healing process. This study focuses on creating a nanocomposite wound dressing with interactive and bioactive properties, showcasing potent antioxidant effects. To achieve this, we developed cerium oxide nanoparticles utilizing curcumin as both the reducing and capping agent. Characterization techniques such as SEM, EDX, DLS, Zetasizer, FTIR, and XRD were utilized to analyze the cerium oxide nanoparticles synthesized through a green approach. The image analysis on the obtained TEM images showed that the curcumin-assisted biosynthesized CeO2NPs have a size of 18.8 ± 4.1 nm. The peaks located at 28.1, 32.7, 47.1, 56.0, 58.7, 69.0, and 76.4 correspond to (111), (200), (220), (311), (222), (400), and (331) crystallographic planes. We applied the Debye-Scherrer equation and observed that the approximate crystallite size of the biosynthesized NPs is around 8.2 nm based on the most intensive broad Bragg peak at 28.1°. The cerium oxide nanoparticles synthesized were integrated into an alginate hydrogel matrix, and the microstructure, porosity, and swelling behavior of the resulting wound dressing were assessed. The characterization analyses provided insights into the physical and chemical properties of the green-synthesized cerium oxide nanoparticles and the alginate hydrogel-based wound dressing. In vitro studies demonstrated that the wound dressing based on alginate hydrogel exhibited favorable antioxidant properties and displayed hemocompatibility and biocompatibility. Animal studies conducted on a rat full-thickness skin wound model showed that the alginate hydrogel-based wound dressing effectively accelerated the wound healing process. Overall, these findings suggest that the alginate hydrogel-based wound dressing holds promise as a highly effective material for wound healing applications.
Collapse
Affiliation(s)
- Ran Zhao
- Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| | - Chenyuyao Zhao
- Graduate School, Shandong First Medical University, Jinan, Shandong, China
| | - Yi Wan
- School of Mechanical Engineering, Shandong University, Jinan, Shandong, China
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Yibing Wang
- Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
9
|
Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J Funct Biomater 2023; 14:518. [PMID: 37888183 PMCID: PMC10607724 DOI: 10.3390/jfb14100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The process of tissue regeneration requires the utilization of a scaffold, which serves as a structural framework facilitating cellular adhesion, proliferation, and migration within a physical environment. The primary aim of scaffolds in tissue engineering is to mimic the structural and functional properties of the extracellular matrix (ECM) in the target tissue. The construction of scaffolds that accurately mimic the architecture of the extracellular matrix (ECM) is a challenging task, primarily due to the intricate structural nature and complex composition of the ECM. The technique of decellularization has gained significant attention in the field of tissue regeneration because of its ability to produce natural scaffolds by removing cellular and genetic components from the extracellular matrix (ECM) while preserving its structural integrity. The present study aims to investigate the various decellularization techniques employed for the purpose of isolating the extracellular matrix (ECM) from its native tissue. Additionally, a comprehensive comparison of these methods will be presented, highlighting their respective advantages and disadvantages. The primary objective of this study is to gain a comprehensive understanding of the anatomical and functional features of the native liver, as well as the prevalence and impact of liver diseases. Additionally, this study aims to identify the limitations and difficulties associated with existing therapeutic methods for liver diseases. Furthermore, the study explores the potential of tissue engineering techniques in addressing these challenges and enhancing liver performance. By investigating these aspects, this research field aims to contribute to the advancement of liver disease treatment and management.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Ajay Kumar Sahi
- School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Meghana Koppadi
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Torun, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
10
|
Silina EV, Stupin VA, Manturova NE, Ivanova OS, Popov AL, Mysina EA, Artyushkova EB, Kryukov AA, Dodonova SA, Kruglova MP, Tinkov AA, Skalny AV, Ivanov VK. Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration. Int J Mol Sci 2023; 24:14501. [PMID: 37833949 PMCID: PMC10572590 DOI: 10.3390/ijms241914501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
| | - Victor A. Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Natalia E. Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.L.P.); (E.A.M.)
| | - Elena A. Mysina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.L.P.); (E.A.M.)
| | - Elena B. Artyushkova
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Maria P. Kruglova
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
| | - Alexey A. Tinkov
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Anatoly V. Skalny
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Alizadeh K, Dezvare Y, Kamyab S, Amirian J, Brangule A, Bandere D. Development of Composite Sponge Scaffolds Based on Carrageenan (CRG) and Cerium Oxide Nanoparticles (CeO 2 NPs) for Hemostatic Applications. Biomimetics (Basel) 2023; 8:409. [PMID: 37754160 PMCID: PMC10527261 DOI: 10.3390/biomimetics8050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, a novel absorbable hemostatic agent was developed using carrageenan (CRG) as a natural polymer and cerium oxide nanoparticles (CeO2 NPs). CRG-CeO2-0.5 and CRG-CeO2-1 composites were prepared by compositing CeO2 to CRG + CeO2 at a weight ratio of 0.5:100 and 1:100, respectively. The physicochemical and structural properties of these compounds were studied and compared with pristine CRG. Upon incorporation of CeO2 nanoparticles into the CRG matrix, significant reductions in hydrogel degradation were observed. In addition, it was noted that CRG-CeO2 exhibited better antibacterial and hemostatic properties than CRG hydrogel without CeO2 NPs. The biocompatibility of the materials was tested using the NIH 3T3 cell line, and all samples were found to be nontoxic. Particularly, CRG-CeO2-1 demonstrated superior hemostatic effects, biocompatibility, and a lower degradation rate since more CeO2 NPs were present in the CRG matrix. Therefore, CRG-CeO2-1 has the potential to be used as a hemostatic agent and wound dressing.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Yasaman Dezvare
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Shirin Kamyab
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
12
|
Burdusel AC, Neacsu IA, Birca AC, Chircov C, Grumezescu AM, Holban AM, Curutiu C, Ditu LM, Stan M, Andronescu E. Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration. J Funct Biomater 2023; 14:378. [PMID: 37504872 PMCID: PMC10381662 DOI: 10.3390/jfb14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Orthopedic bone graft infections are major complications in today's medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+) and Magnesium (Mg2+) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral's composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdusel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandra Catalina Birca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Carmen Curutiu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Lia Mara Ditu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| |
Collapse
|