1
|
Rocha P, Rebelo P, Pacheco JG, Geraldo D, Bento F, Leão-Martins JM, Delerue-Matos C, Nouws HPA. Electrochemical molecularly imprinted polymer sensor for simple and fast analysis of tetrodotoxin in seafood. Talanta 2024; 282:127002. [PMID: 39383719 DOI: 10.1016/j.talanta.2024.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Tetrodotoxin (TTX) is a marine biotoxin whose biosynthesis is associated with the pufferfish. Its distribution is primarily focused in Asian and tropical marine areas. Currently, this group of toxins is classified as emerging in Europe, and its presence could be related to climate change. This incidence has prompted the European Union, with the European Food Safety Authority, to establish control and monitoring mechanisms for TTX in marine products in Europe. In this context, the development of analytical tools capable of ensuring the safety of food products, especially seafood and fish, is a crucial task. This study describes the development of a molecularly imprinted polymer (MIP) based electrochemical sensor for the analysis of TTX. The MIP was synthesized through the electropolymerization of a functional monomer, ortho-phenylenediamine in the presence of a dummy template, voglibose. The MIP sensor was constructed on a screen-printed gold electrode and characterized by cyclic voltammetry. Differential pulse voltammetry, using a redox probe ([Fe(CN)6]3-/4-), was used in the analysis protocol. The developed sensor exhibited a linear response between 5.0 μg mL-1 and 25.0 μg mL-1, with a limit of detection of 1.14 μg mL-1. Its high imprinting efficiency conferred outstanding selectivity towards TTX. The sensor's applicability was confirmed through recovery assays on spiked mussel samples, achieving recoveries of 81.0 %, 110.2 %, and 102.5 % for external standard addition at 30.0, 44.0, and 60.0 μg kg-1, respectively, with relative standard deviations below 15 %. These results are comparable to those obtained using Hydrophilic Interaction Liquid Chromatography coupled with Tandem Mass Spectrometry, a validated method carried out by the European Reference Laboratory for Marine Biotoxins. Thus, the MIP sensor represents a portable, simple, and fast tool with essential analytical functionalities for the sampling phase and pre-selection of laboratory samples for analysis.
Collapse
Affiliation(s)
- P Rocha
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Departamento de Química Analítica y Alimentaria, Faculdade de Química, Campus Universitario de Vigo As Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - P Rebelo
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - J G Pacheco
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - D Geraldo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - F Bento
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J M Leão-Martins
- Departamento de Química Analítica y Alimentaria, Faculdade de Química, Campus Universitario de Vigo As Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - H P A Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
2
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Joksović S, Kundačina I, Milošević I, Stanojev J, Radonić V, Bajac B. Single-Walled Carbon Nanotube-Modified Gold Leaf Immunosensor for Escherichia coli Detection. ACS OMEGA 2024; 9:22277-22284. [PMID: 38799361 PMCID: PMC11112687 DOI: 10.1021/acsomega.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
The requirement to prevent foodborne illnesses underscores the need for reliable detection tools, stimulating biosensor technology with practical solutions for in-field applications. This study introduces a low-cost immunosensor based on a single-walled carbon nanotube (SWCNT)-modified gold leaf electrode (GLE) for the sensitive detection of Escherichia coli. The immunosensor is realized with a layer-by-layer (LbL) assembly technique, creating an electrostatic bond between positively charged polyethylenimine (PEI) and negatively charged carboxyl-functionalized SWCNTs on the GLE. The structural and functional characterization of the PEI-SWCNT film was performed with Raman spectroscopy, high-resolution scanning electron microscopy (HRSEM), and electrical measurements. The PEI-SWCNT film was used as a substrate for antibody immobilization, and the electrochemical sensing potential was validated using electrochemical impedance spectroscopy (EIS). The results showed a wide dynamic range of E. coli detection, 101-108 cfu/mL, with a limit of detection (LOD) of 1.6 cfu/mL in buffer and 15 cfu/mL in the aqueous solution used for cleansing fresh lettuce leaves, affirming its efficiency as a practical and affordable tool in enhancing food safety.
Collapse
Affiliation(s)
- Sara Joksović
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Ivana Kundačina
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Ivana Milošević
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Jovana Stanojev
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Vasa Radonić
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad,
BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
5
|
Afnan Uda MN, Yousif Dafhalla AK, S Dhahi T, Adam T, Gopinath SCB, Ambek AB, Aiman Uda MN, Mohammed M, Parmin NA, Ibrahim NH, Hashim U. Conductometric immunosensor for specific Escherichia coli O157:H7 detection on chemically funcationalizaed interdigitated aptasensor. Heliyon 2024; 10:e26988. [PMID: 38463770 PMCID: PMC10920380 DOI: 10.1016/j.heliyon.2024.e26988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Escherichia coli O157:H7 is a strain of Escherichia coli known for causing foodborne illness through the consumption of contaminated or raw food. To detect this pathogen, a conductometric immunosensor was developed using a conductometric sensing approach. The sensor was constructed on an interdigitated electrode and modified with a monoclonal anti-Escherichia coli O157:H7 aptamer. A total of 200 electrode pairs were fabricated and modified to bind to the target molecule replica. The binding replica, acting as the bio-recognizer, was linked to the electrode surface using 3-Aminopropyl triethoxysilane. The sensor exhibited excellent performance, detecting Escherichia coli O157:H7 in a short time frame and demonstrating a wide detection range of 1 fM to 1 nM. Concentrations of Escherichia coli O157:H7 were detected within this range, with a minimum detection limit of 1 fM. This innovative sensor offers simplicity, speed, high sensitivity, selectivity, and the potential for rapid sample processing. The potential of this proposed biosensor is particularly beneficial in applications such as drug screening, environmental monitoring, and disease diagnosis, where real-time information on biomolecular interactions is crucial for timely decision-making and where cross-reactivity or interference may compromise the accuracy of the analysis.
Collapse
Affiliation(s)
| | - Alaa Kamal Yousif Dafhalla
- Department of Computer Engineering, College of Computer Science and Engineering, University of Ha'il, Saudi Arabia
| | - Thikra S Dhahi
- Electronics Technical Department, Southern Technical University, Basrah, Iraq
| | - Tijjani Adam
- Faculty of Electronics Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Asral Bahari Ambek
- Faculty of Electronics Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Muhammad Nur Aiman Uda
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, 02100, Malaysia
| | - Mohammed Mohammed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Nor Azizah Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Nur Hulwani Ibrahim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
6
|
Novakovic Z, Khalife M, Costache V, Camacho MJ, Cardoso S, Martins V, Gadjanski I, Radovic M, Vidic J. Rapid Detection and Identification of Vancomycin-Sensitive Bacteria Using an Electrochemical Apta-Sensor. ACS OMEGA 2024; 9:2841-2849. [PMID: 38250355 PMCID: PMC10795129 DOI: 10.1021/acsomega.3c08219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
In order to combat the complex and diverse infections caused by bacteria, it is essential to develop efficient diagnostic tools. Current techniques for bacterial detection rely on laborious multistep procedures, with high costs and extended time of analysis. To overcome these limitations, we propose here a novel portable electrochemical biosensor for the rapid detection and identification of Gram-positive bacteria that leverages the recognition capabilities of vancomycin and aptamers. A vancomycin-modified screen-printed carbon electrode was used to selectively capture Gram-positive bacteria susceptible to this antibiotic. Electrochemical impedance spectroscopy and scanning electron microscopy demonstrated that capture was achieved in 10 min, with a limit of detection of only 2 CFU/mL. We then tested the device's potential for aptamer-based bacterial identification using Staphylococcus aureus and Bacillus cereus as the test strains. Specifically, electrodes with captured bacteria were exposed to species-specific aptamers, and the resulting changes in current intensity were analyzed using differential pulse voltammetry. When used directly in untreated milk or serum, the system was able to successfully identify a small amount of S. aureus and B. cereus (100 CFU/mL) in less than 45 min. This novel biosensor has the potential to serve as an invaluable tool that could be used, even by inexperienced staff, in a broad range of settings including clinical diagnostics, food safety analysis, environmental monitoring, and security applications.
Collapse
Affiliation(s)
- Zorica Novakovic
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
- MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350 Jouy-en-Josas, France
| | - Maria Joao Camacho
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Veronica Martins
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, 1000-049 Lisbon, Portugal
| | - Ivana Gadjanski
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Marko Radovic
- University of Novi Sad, BioSense Institute, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy-en-Josas, France
| |
Collapse
|