1
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
Affiliation(s)
- Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tianyuan Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ruopeng Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|