1
|
Yu CX, Huang KH, Chen TL, Liu CC, Fu LM. Microfluidic Detection Platform for Determination of Ractopamine in Food. BIOSENSORS 2024; 14:462. [PMID: 39451675 PMCID: PMC11506807 DOI: 10.3390/bios14100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
A novel microfluidic ractopamine (RAC) detection platform consisting of a microfluidic RAC chip and a smart analysis device is proposed for the determination of RAC concentration in meat samples. This technology utilizes gold nanoparticles (AuNPs) modified with glutamic acid (GLU) and polyethyleneimine (PEI) to measure RAC concentration in food products. When RAC is present, AuNPs aggregate through hydrogen bonding, causing noticeable changes in their optical properties, which are detected using a self-built UV-visible micro-spectrophotometer. Within the range of 5 to 80 ppb, a linear relationship exists between the absorbance ratio (A693nm/A518nm) (Y) and RAC concentration (X), expressed as Y = 0.0054X + 0.4690, with a high coefficient of determination (R2 = 0.9943). This method exhibits a detection limit of 1.0 ppb and achieves results within 3 min. The practical utility of this microfluidic assay is exemplified through the evaluation of RAC concentrations in 50 commercially available meat samples. The variance between concentrations measured using this platform and those determined via liquid chromatography-tandem mass spectrometry (LC-MS/MS) is less than 8.33%. These results underscore the viability of the microfluidic detection platform as a rapid and cost-effective solution for ensuring food safety and regulatory compliance within the livestock industry.
Collapse
Affiliation(s)
- Cheng-Xue Yu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (C.-X.Y.); (K.-H.H.); (T.-L.C.)
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (C.-X.Y.); (K.-H.H.); (T.-L.C.)
| | - To-Lin Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (C.-X.Y.); (K.-H.H.); (T.-L.C.)
| | - Chan-Chiung Liu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (C.-X.Y.); (K.-H.H.); (T.-L.C.)
| |
Collapse
|
2
|
Lindsay S, Tumolva O, Khamiakova T, Coppenolle H, Kovarik M, Shah S, Holm R, Perrie Y. Can We Simplify Liposome Manufacturing Using a Complex DoE Approach? Pharmaceutics 2024; 16:1159. [PMID: 39339196 PMCID: PMC11435235 DOI: 10.3390/pharmaceutics16091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Microfluidic liposome production presents a streamlined pathway for expediting the translation of liposomal formulations from the laboratory setting to clinical applications. Using this production method, resultant liposome characteristics can be tuned through the control of both the formulation parameters (including the lipids and solvents used) and production parameters (including the production speed and mixing ratio). Therefore, the aim of this study was to investigate the relationship between not only total flow rate (TFR), the fraction of the aqueous flow rate over the organic flow rate (flow rate ratio (FRR)), and the lipid concentration, but also the solvent selection, aqueous buffer, and production temperature. To achieve this, we used temperature, applying a design of experiment (DoE) combined with machine learning. This study demonstrated that liposome size and polydispersity were influenced by manipulation of not only the total flow rate and flow rate ratio but also through the lipids, lipid concentration, and solvent selection, such that liposome attributes can be in-process controlled, and all factors should be considered within a manufacturing process as impacting on liposome critical quality attributes.
Collapse
Affiliation(s)
- Sarah Lindsay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Olympia Tumolva
- Global Development, Janssen Pharmaceutica NV, a Johnson & Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Tatsiana Khamiakova
- Global Development, Janssen Pharmaceutica NV, a Johnson & Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Hans Coppenolle
- Global Development, Janssen Pharmaceutica NV, a Johnson & Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Martin Kovarik
- Global Development, Janssen Pharmaceutica NV, a Johnson & Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sanket Shah
- Therapeutics Development and Supply, Janssen Pharmaceutica NV, a Johnson & Johnson Company, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - René Holm
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| |
Collapse
|
3
|
Bizualem YD, Nurie AG, Nadew TT. A review on biodiesel micromixers: Types of micromixers, configurations, and flow patterns. Heliyon 2024; 10:e34790. [PMID: 39144977 PMCID: PMC11320477 DOI: 10.1016/j.heliyon.2024.e34790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
The production of biodiesel conventionally relies on batch reactors for the transesterification of oil and alcohol. However, the inherent limitations of batch-wise biodiesel production, including biphasic oil and alcohol, the establishment of equilibrium during transesterification, and heightened manufacturing costs, underscore the need for intensifying biodiesel synthesis. The integration of microreactors and micromixers presents a promising avenue to achieve these objectives, driving significant interest in the development of continuous biodiesel synthesis within microreactor systems. Continuous microreactors, empowered by micromixers, offer key advantages such as a heightened interfacial area between immiscible reactants and phases, as well as reduced mass transfer resistance, culminating in elevated biodiesel yields. Consequently, the micromixer emerges as a pivotal component in microreactor systems. This review delves into the pivotal role of micromixers in biodiesel production within microreactors, shedding light on micromixer types, channel configurations, reactor dimensions, mixing indices, and the influence of co-solvents in micromixers. The efficiency of various micromixer types is meticulously analyzed using a mixing index and yield of oil. Furthermore, the review addresses the challenges inherent in biodiesel production when employing micromixers and microreactors.
Collapse
Affiliation(s)
- Yonas Desta Bizualem
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| | - Amare Gashu Nurie
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| | - Talbachew Tadesse Nadew
- Department of Chemical and Food Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| |
Collapse
|
4
|
Raihan MK, Kim N, Song Y, Xuan X. Elasto-inertial instabilities in the merging flow of viscoelastic fluids. SOFT MATTER 2024. [PMID: 39036949 DOI: 10.1039/d4sm00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Many engineering and natural phenomena involve the merging of two fluid streams through a T-junction. Previous studies of such merging flows have been focused primarily upon Newtonian fluids. We observed in our recent experiment with five different polymer solutions a direct change from an undisturbed to either a steady vortical or unsteady three-dimensional flow at the T-junction with increasing inertia. The transition state(s) in between these two types of merging flow patterns is, however, yet to be known. We present here a systematic experimental study of the merging flow of polyethylene oxide (PEO) solutions with varying polymer concentrations and molecular weights. Two new paths of flow development are identified with the increase of Reynolds number: one is the transition in very weakly viscoelastic fluids first to steady vortical flow and then to a juxtaposition state with an unsteady elastic eddy zone in the middle and a steady inertial vortex on each side, and the other is the transition in weakly viscoelastic fluids first to a steady vortical and/or a juxtaposition state and then to a fully unsteady flow. Interestingly, the threshold Reynolds number for the onset of elastic instabilities in the merging flow is not a monotonic function of the elasticity number, but instead follows a power-law dependence on the polymer concentration relative to its overlap value. Such a dependence turns out qualitatively consistent with the prediction of the McKinley-Pakdel criterion.
Collapse
Affiliation(s)
- Mahmud Kamal Raihan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Nayoung Kim
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, P. R. China.
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
5
|
Kheirkhah Barzoki A. Optimization of passive micromixers: effects of pillar configuration and gaps on mixing efficiency. Sci Rep 2024; 14:16245. [PMID: 39009602 PMCID: PMC11251160 DOI: 10.1038/s41598-024-66664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Chemical bioreactions play a significant role in many of the microfluidic devices, and their applications in biomedical science have seen substantial growth. Given that effective mixing is vital for initiating biochemical reactions in many applications, micromixers have become increasingly prevalent for high-throughput assays. In this research, a numerical study using the finite element method was conducted to examine the fluid flow and mass transfer characteristics in novel micromixers featuring an array of pillars. The study utilized two-dimensional geometries. The impact of pillar configuration on mixing performance was evaluated using concentration distribution and mixing index as key metrics. The study explores the effects of pillar array design on mixing performance and pressure drop, drawing from principles such as contraction-expansion and split-recombine. Two configurations of pillar arrays, slanted and arrowhead, are introduced, each undergoing investigation regarding parameters such as pillar diameter, gap size between pillar groups, distance between pillars, and vertical shift in pillar groups. Subsequently, optimal micromixers are identified, exhibiting mixing efficiency exceeding 99.7% at moderate Reynolds number (Re = 1), a level typically challenging for micromixers to attain high mixing efficiency. Notably, the pressure drop remains low at 1102 Pa. Furthermore, the variations in mixing index over time and across different positions along the channel are examined. Both configurations demonstrate short mixing lengths and times. At a distance of 4300 μm from the inlet, the slanted and arrowhead configurations yielded mixing indices of 97.2% and 98.9%, respectively. The micromixers could provide a mixing index of 99.5% at the channel's end within 8 s. Additionally, both configurations exceeded 90% mixing indices by the 3 s. The combination of rapid mixing, low pressure drop, and short mixing length positions the novel micromixers as highly promising for microfluidic applications.
Collapse
Affiliation(s)
- Ali Kheirkhah Barzoki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
6
|
Monasterio A, Núñez E, Verdugo V, Osorio FA. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers (Basel) 2024; 16:1559. [PMID: 38891503 PMCID: PMC11174876 DOI: 10.3390/polym16111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In the food industry context, where fresh cheese stands out as a highly perishable product with a short shelf life, this study aimed to extend its preservation through multi-layer edible coatings. The overall objective was to analyze the biaxial behavior and texture of fresh cheese coated with nanoliposomes encapsulating grape seed tannins (NTs) and polysaccharides (hydroxypropyl methylcellulose; HPMC and kappa carrageenan; KC) using immersion and spray methods, establishing comparisons with uncoated cheeses and commercial samples, including an accelerated shelf-life study. NT, HPMC, and KC were employed as primary components in the multi-layer edible coatings, which were applied through immersion and spray. The results revealed significant improvements, such as a 20% reduction in weight loss and increased stability against oxidation, evidenced by a 30% lower peroxide index than the uncoated samples. These findings underscore the effectiveness of edible coatings in enhancing the quality and extending the shelf life of fresh cheese, highlighting the innovative application of nanoliposomes and polysaccharide blends and the relevance of applying this strategy in the food industry. In conclusion, this study provides a promising perspective for developing dairy products with improved properties, opening opportunities to meet market demands and enhance consumer acceptance.
Collapse
Affiliation(s)
- Angela Monasterio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Valeria Verdugo
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| |
Collapse
|
7
|
Chiesa E, Caimi A, Bellotti M, Giglio A, Conti B, Dorati R, Auricchio F, Genta I. Effect of Micromixer Design on Lipid Nanocarriers Manufacturing for the Delivery of Proteins and Nucleic Acids. Pharmaceutics 2024; 16:507. [PMID: 38675169 PMCID: PMC11054535 DOI: 10.3390/pharmaceutics16040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid-fluid interface and indeed the mass transfer. Since the geometry of the adopted micromixer varies from those already published, a Design of Experiment (DoE) was necessary to identify the operating (total flow, flow rate ratio) and formulation (lipid concentration, lipid molar ratios) parameters affecting the nanocarrier quality. The suitable application of the platform was investigated by producing neutral, stealth and cationic liposomes, using DaunoXome®, Myocet®, Onivyde® and Onpattro® as the benchmark. The effect of condensing lipid (DOTAP, 3-10-20 mol%), coating lipids (DSPE-PEG550 and DSPE-PEG2000), as well as structural lipids (DSPC, eggPC) was pointed out. A very satisfactory encapsulation efficiency, always higher than 70%, was successfully obtained for model biomolecules (myoglobin, short and long nucleic acids).
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (E.C.); (A.G.); (B.C.); (R.D.)
| | - Alessandro Caimi
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (A.C.); (M.B.)
| | - Marco Bellotti
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (A.C.); (M.B.)
| | - Alessia Giglio
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (E.C.); (A.G.); (B.C.); (R.D.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (E.C.); (A.G.); (B.C.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (E.C.); (A.G.); (B.C.); (R.D.)
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (A.C.); (M.B.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; (E.C.); (A.G.); (B.C.); (R.D.)
| |
Collapse
|
8
|
Wang C, He Y. A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface. MICROMACHINES 2023; 15:91. [PMID: 38258210 PMCID: PMC10819459 DOI: 10.3390/mi15010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
Micromixers play a crucial role as essential components in microfluidic analysis systems. This paper introduces a novel micromixer designed by harnessing electrokinetic vortices arising on the surface of a Janus droplet within a microchannel. The Janus droplet is characterized by different polarities of charges on its two sides (upstream part and downstream part). In the presence of a direct current electric field, the droplet's surface generates electroosmotic flows in opposite directions, resulting in the formation of vortices and facilitating solution mixing. Results from numerical simulations suggest that a better mixing performance of the micromixer is associated with both a higher absolute value of the zeta potential ratio between the downstream and upstream surfaces of the Janus droplet and a larger downstream surface area. Additionally, this study reveals that microchannel dimensions significantly influence the performance of the micromixer. Smaller microchannel widths and heights correspond to a larger mixing index for the micromixer. The micromixer presented in this study features a simple structure, easy fabrication, and holds promising application potential.
Collapse
Affiliation(s)
- Chengfa Wang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yehui He
- Computer Center, The Second Hospital of Dalian Medical University, Dalian 116023, China;
| |
Collapse
|