1
|
Aboal‐Castro L, Radziunas‐Salinas Y, Pita‐Vilar M, Carnero B, Mikos AG, Alvarez‐Lorenzo C, Flores‐Arias MT, Diaz‐Gomez L. Laser-Assisted Micropatterned 3D Printed Scaffolds with Customizable Surface Topography and Porosity for Modulation of Cell Function. Adv Healthc Mater 2025; 14:e2403992. [PMID: 39562173 PMCID: PMC11773100 DOI: 10.1002/adhm.202403992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Indexed: 11/21/2024]
Abstract
The dynamic interaction between cells and their substrate is a cornerstone of biomaterial-based tissue regeneration focused on unraveling the complex factors that govern this crucial relationship. A key challenge is translating physical cues from 2D to 3D due to limitations in current biofabrication techniques. In response, this study introduces an innovative approach that combines additive and subtractive manufacturing for precise surface patterning of 3D printed scaffolds. Using poly(𝜀-caprolactone) as the scaffold material, polymeric fibers are 3D printed and subsequently laser-engraved with femtosecond laser to precisely create controlled microtopographies, including microgrooves (10 and 80 µm in width) and micropits (25 µm in diameter). Testing shows that the process does not compromise the mechanical properties of the fibers, which is critical for structural applications in tissue engineering. Human mesenchymal stem cells are used to investigate the effects of these topographical features on cell behavior. The 10 µm wide microgrooves notably enhance cell attachment, with cells aligning in elongated forms along the grooves, while micropits and unpatterned surfaces promote polygonal cell shapes. This combined approach demonstrates that precisely engineered microtopographies on 3D printed scaffolds can better mimic the natural extracellular matrix, improving cellular responses and offering a promising strategy for advancing tissue regeneration.
Collapse
Affiliation(s)
- Lucia Aboal‐Castro
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Yago Radziunas‐Salinas
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Photonics4Life Research GroupApplied Physics DepartmentFacultade de Física and Facultade de Óptica e OptometríaUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
| | - Maria Pita‐Vilar
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Bastian Carnero
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Photonics4Life Research GroupApplied Physics DepartmentFacultade de Física and Facultade de Óptica e OptometríaUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
| | | | - Carmen Alvarez‐Lorenzo
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Maria Teresa Flores‐Arias
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Photonics4Life Research GroupApplied Physics DepartmentFacultade de Física and Facultade de Óptica e OptometríaUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
| | - Luis Diaz‐Gomez
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| |
Collapse
|
2
|
Hooper R, Cummings C, Beck A, Vazquez-Armendariz J, Rodriguez C, Dean D. Sheet-based extrusion bioprinting: a new multi-material paradigm providing mid-extrusion micropatterning control for microvascular applications. Biofabrication 2024; 16:025032. [PMID: 38447217 PMCID: PMC10938191 DOI: 10.1088/1758-5090/ad30c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
As bioprinting advances into clinical relevance with patient-specific tissue and organ constructs, it must be capable of multi-material fabrication at high resolutions to accurately mimick the complex tissue structures found in the body. One of the most fundamental structures to regenerative medicine is microvasculature. Its continuous hierarchical branching vessel networks bridge surgically manipulatable arteries (∼1-6 mm) to capillary beds (∼10µm). Microvascular perfusion must be established quickly for autologous, allogeneic, or tissue engineered grafts to survive implantation and heal in place. However, traditional syringe-based bioprinting techniques have struggled to produce perfusable constructs with hierarchical branching at the resolution of the arterioles (∼100-10µm) found in microvascular tissues. This study introduces the novel CEVIC bioprinting device (i.e.ContinuouslyExtrudedVariableInternalChanneling), a multi-material technology that breaks the current extrusion-based bioprinting paradigm of pushing cell-laden hydrogels through a nozzle as filaments, instead, in the version explored here, extruding thin, wide cell-laden hydrogel sheets. The CEVIC device adapts the chaotic printing approach to control the width and number of microchannels within the construct as it is extruded (i.e. on-the-fly). Utilizing novel flow valve designs, this strategy can produce continuous gradients varying geometry and materials across the construct and hierarchical branching channels with average widths ranging from 621.5 ± 42.92%µm to 11.67 ± 14.99%µm, respectively, encompassing the resolution range of microvascular vessels. These constructs can also include fugitive/sacrificial ink that vacates to leave demonstrably perfusable channels. In a proof-of-concept experiment, a co-culture of two microvascular cell types, endothelial cells and pericytes, sustained over 90% viability throughout 1 week in microchannels within CEVIC-produced gelatin methacryloyl-sodium alginate hydrogel constructs. These results justify further exploration of generating CEVIC-bioprinted microvasculature, such as pre-culturing and implantation studies.
Collapse
Affiliation(s)
- Ryan Hooper
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Caleb Cummings
- Department of Biology, The Ohio State University, Columbus, OH 43210, United States of America
| | - Anna Beck
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Javier Vazquez-Armendariz
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, NL, Mexico
| | - Ciro Rodriguez
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT), Apodaca 66629, NL, Mexico
- Departamento de Ingeniería Mecánica y Materiales Avanzados, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, NL, Mexico
| | - David Dean
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|
3
|
Mishra S, Kumarasamy M. Microfluidics engineering towards personalized oncology-a review. IN VITRO MODELS 2023; 2:69-81. [PMID: 39871996 PMCID: PMC11756504 DOI: 10.1007/s44164-023-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 01/29/2025]
Abstract
Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients' blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.
Collapse
Affiliation(s)
- Sushmita Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| |
Collapse
|
4
|
Impact of In-Process Crystallinity of Biodegradable Scaffolds Fabricated by Material Extrusion on the Micro- and Nanosurface Topography, Viability, Proliferation, and Differentiation of Human Mesenchymal Stromal Cells. Polymers (Basel) 2023; 15:polym15061468. [PMID: 36987248 PMCID: PMC10052033 DOI: 10.3390/polym15061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Due to affordability, and the ability to parametrically control the vital processing parameters, material extrusion is a widely accepted technology in tissue engineering. Material extrusion offers sufficient control over pore size, geometry, and spatial distribution, and can also yield different levels of in-process crystallinity in the resulting matrix. In this study, an empirical model based on four process parameters—extruder temperature, extrusion speed, layer thickness, and build plate temperature—was used to control the level of in-process crystallinity of polylactic acid (PLA) scaffolds. Two sets of scaffolds were fabricated, with low- and high-crystallinity content, and subsequently seeded with human mesenchymal stromal cells (hMSC). The biochemical activity of hMSC cells was tested by examining the DNA content, lactate dehydrogenase (LDH) activity, and alkaline phosphatase (ALP) tests. The results of this 21-day in vitro experiment showed that high level crystallinity scaffolds performed significantly better in terms of cell response. Follow-up tests revealed that the two types of scaffolds were equivalent in terms of hydrophobicity, and module of elasticity. However, detailed examination of their micro- and nanosurface topographic features revealed that the higher crystallinity scaffolds featured pronounced nonuniformity and a larger number of summits per sampling area, which was the main contributor to a significantly better cell response.
Collapse
|
5
|
Siegle L, Ristok S, Giessen H. Complex aspherical singlet and doublet microoptics by grayscale 3D printing. OPTICS EXPRESS 2023; 31:4179-4189. [PMID: 36785392 DOI: 10.1364/oe.480472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
We demonstrate 3D printed aspherical singlet and doublet microoptical components by grayscale lithography and characterize and evaluate their excellent shape accuracy and optical performance. The typical two-photon polymerization (2PP) 3D printing process creates steps in the structure which is undesired for optical surfaces. We utilize two-photon grayscale lithography (2GL) to create step-free lenses. To showcase the 2GL process, the focusing ability of a spherical and aspherical singlet lens are compared. The surface deviations of the aspherical lens are minimized by an iterative design process and no distinct steps can be measured via confocal microscopy. We design, print, and optimize an air-spaced doublet lens with a diameter of 300 µm. After optimization, the residual shape deviation is less than 100 nm for the top lens and 20 nm for the bottom lens of the doublet. We examine the optical performance with an USAF 1951 resolution test chart to find a resolution of 645 lp/mm.
Collapse
|
6
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
7
|
Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero‐Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D‐Printed Scaffolds and Implications in Tissue Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leire Iturriaga
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Kyle D. Van Gordon
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Garazi Larrañaga-Jaurrieta
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Sandra Camarero‐Espinosa
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
- IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
| |
Collapse
|
8
|
Bouzin M, Zeynali A, Marini M, Sironi L, Scodellaro R, D’Alfonso L, Collini M, Chirico G. Multiphoton Laser Fabrication of Hybrid Photo-Activable Biomaterials. SENSORS 2021; 21:s21175891. [PMID: 34502787 PMCID: PMC8433654 DOI: 10.3390/s21175891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
The possibility to shape stimulus-responsive optical polymers, especially hydrogels, by means of laser 3D printing and ablation is fostering a new concept of “smart” micro-devices that can be used for imaging, thermal stimulation, energy transducing and sensing. The composition of these polymeric blends is an essential parameter to tune their properties as actuators and/or sensing platforms and to determine the elasto-mechanical characteristics of the printed hydrogel. In light of the increasing demand for micro-devices for nanomedicine and personalized medicine, interest is growing in the combination of composite and hybrid photo-responsive materials and digital micro-/nano-manufacturing. Existing works have exploited multiphoton laser photo-polymerization to obtain fine 3D microstructures in hydrogels in an additive manufacturing approach or exploited laser ablation of preformed hydrogels to carve 3D cavities. Less often, the two approaches have been combined and active nanomaterials have been embedded in the microstructures. The aim of this review is to give a short overview of the most recent and prominent results in the field of multiphoton laser direct writing of biocompatible hydrogels that embed active nanomaterials not interfering with the writing process and endowing the biocompatible microstructures with physically or chemically activable features such as photothermal activity, chemical swelling and chemical sensing.
Collapse
Affiliation(s)
- Margaux Bouzin
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Amirbahador Zeynali
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Mario Marini
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Laura Sironi
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Riccardo Scodellaro
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Laura D’Alfonso
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
| | - Maddalena Collini
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
- Institute for Applied Sciences and Intelligent Systems, CNR, 80078 Pozzuoli, Italy
- Correspondence: (M.C.); (G.C.)
| | - Giuseppe Chirico
- Dipartimento di Fisica, Università degli studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (A.Z.); (M.M.); (L.S.); (R.S.); (L.D.)
- Institute for Applied Sciences and Intelligent Systems, CNR, 80078 Pozzuoli, Italy
- Correspondence: (M.C.); (G.C.)
| |
Collapse
|
9
|
Otuka AJG, Tomazio NB, Paula KT, Mendonça CR. Two-Photon Polymerization: Functionalized Microstructures, Micro-Resonators, and Bio-Scaffolds. Polymers (Basel) 2021; 13:polym13121994. [PMID: 34207089 PMCID: PMC8234590 DOI: 10.3390/polym13121994] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
The direct laser writing technique based on two-photon polymerization (TPP) has evolved considerably over the past two decades. Its remarkable characteristics, such as 3D capability, sub-diffraction resolution, material flexibility, and gentle processing conditions, have made it suitable for several applications in photonics and biosciences. In this review, we present an overview of the progress of TPP towards the fabrication of functionalized microstructures, whispering gallery mode (WGM) microresonators, and microenvironments for culturing microorganisms. We also describe the key physical-chemical fundamentals underlying the technique, the typical experimental setups, and the different materials employed for TPP.
Collapse
Affiliation(s)
- Adriano J. G. Otuka
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Correspondence: (A.J.G.O.); (C.R.M.)
| | - Nathália B. Tomazio
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Device Research Laboratory, “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
| | - Kelly T. Paula
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
| | - Cleber R. Mendonça
- Photonics Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, SP, Brazil; (N.B.T.); (K.T.P.)
- Correspondence: (A.J.G.O.); (C.R.M.)
| |
Collapse
|
10
|
Šimoliūnas E, Kantakevičius P, Kalvaitytė M, Bagdzevičiūtė L, Alksnė M, Baltriukienė D. DNA-DAPI Interaction-Based Method for Cell Proliferation Rate Evaluation in 3D Structures. Curr Issues Mol Biol 2021; 43:251-263. [PMID: 34070775 PMCID: PMC8929038 DOI: 10.3390/cimb43010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Effective cell number monitoring throughout the three-dimensional (3D) scaffold is a key factor in tissue engineering. There are many methods developed to evaluate cell number in 2D environments; however, they often encounter limitations in 3D. Therefore, there is a demand for reliable methods to measure cell proliferation in 3D surroundings. Here, we report a novel technique for the DNA content-based evaluation of cell proliferation using DNA-binding dye DAPI. We demonstrated the method's compatibility with four different cell cultures: cancer lines MCF-7 and MH-22a, embryonic fibroblast cell line Swiss 3T3, and primary mesenchymal stem cell culture isolated from rat's incisors. The DAPI based method was able to successfully evaluate cell proliferation in 2D, 2.5D, and 3D environments. Even though the proposed method does not discriminate between viable and dead cells, it might give a convenient snapshot of the cell number at a given time point. This should help to more reliably evaluate various processes proceeding in 2.5D and 3D cultures.
Collapse
Affiliation(s)
- Egidijus Šimoliūnas
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Paulius Kantakevičius
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The Univesity of Manchester, Manchester M13 9PL, UK
| | - Miglė Kalvaitytė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Lina Bagdzevičiūtė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Milda Alksnė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| | - Daiva Baltriukienė
- Life Sciences Center, Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-10257 Vilnius, Lithuania; (P.K.); (M.K.); (L.B.); (M.A.); (D.B.)
| |
Collapse
|
11
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
12
|
Azadmanesh F, Pourmadadi M, Zavar Reza J, Yazdian F, Omidi M, Haghirosadat BF. Synthesis of a novel nanocomposite containing chitosan as a three-dimensional printed wound dressing technique: Emphasis on gene expression. Biotechnol Prog 2021; 37:e3132. [PMID: 33527746 DOI: 10.1002/btpr.3132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
In this study, a highly porous three-dimensional (3D)-printed wound healing core/shell scaffold fabricated using poly-lactic acid (PLA). The core of scaffold was composed of hyaluronic acid (HA), copper carbon dots (Cu-CDs), rosmarinic acid, and chitosan hydrogel. Cu-CDs were synthesized using ammonium hydrogen citrate under hydrothermal conditions. Formulation containing 1 mg ml-1 concentration of Cu-CDs showed an excellent antibacterial activity against gram bacteria. At 0.25 mg ml-1 of Cu-CDs concentration, scaffold had a good biocompatibility as confirmed by cytotoxicity assay on L929 fibroblast stem cells. in vivo wound healing experiments on groups of rats revealed that after 15 days of treatment, the optimal formulation of composite scaffold significantly improves the wound healing process compared to the PLA scaffold. This finding was confirmed by histological analysis and the relative expression of PDGF, TGF-β, and MMP-1 genes. The biocompatible antibacterial CU-CDS/PLA/HA/chitosan/rosmarinic acid nanocomposite is a promising wound healing scaffold which highly accelerates the process of skin regeneration.
Collapse
Affiliation(s)
- Fatemeh Azadmanesh
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Meisam Omidi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, Iran
| | - Bibi Fatemeh Haghirosadat
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review. MICROMACHINES 2021; 12:mi12030339. [PMID: 33810056 PMCID: PMC8004812 DOI: 10.3390/mi12030339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
In recent years, additive manufacturing has steadily gained attention in both research and industry. Applications range from prototyping to small-scale production, with 3D printing offering reduced logistics overheads, better design flexibility and ease of use compared with traditional fabrication methods. In addition, printer and material costs have also decreased rapidly. These advantages make 3D printing attractive for application in microfluidic chip fabrication. However, 3D printing microfluidics is still a new area. Is the technology mature enough to print complex microchannel geometries, such as droplet microfluidics? Can 3D-printed droplet microfluidic chips be used in biological or chemical applications? Is 3D printing mature enough to be used in every research lab? These are the questions we will seek answers to in our systematic review. We will analyze (1) the key performance metrics of 3D-printed droplet microfluidics and (2) existing biological or chemical application areas. In addition, we evaluate (3) the potential of large-scale application of 3D printing microfluidics. Finally, (4) we discuss how 3D printing and digital design automation could trivialize microfluidic chip fabrication in the long term. Based on our analysis, we can conclude that today, 3D printers could already be used in every research lab. Printing droplet microfluidics is also a possibility, albeit with some challenges discussed in this review.
Collapse
|
14
|
Athanasios T, Konstantinos A, Despoina D. Three-dimensional-printed replica models of bone for experimentally decoupling trabecular bone properties contribution to ultrasound propagation parameters. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:296. [PMID: 33514143 DOI: 10.1121/10.0003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A detailed investigation of the relationship between ultrasonic (US) properties and trabecular bone microstructure is difficult because of the great variability in the bone loss process. The aim of this work was twofold. First, to verify by compressive tests that the three-dimensional (3D)-printer is able to produce precisely and repeatedly "bone replica models" of different size and density. Following, replicas of the original specimens with two different polymers and thinned trabeculae models were used to investigate US properties (speed of sound, SOS, and backscatter coefficient), aiming to deconvolute the influence of material properties on ultrasound characteristics. The results revealed that matrix material properties influence only the magnitude of the backscatter coefficient, whereas the characteristic undulated patterns are related to the trabecular structure. Simulation of perforation and thinning of cancellous bone, associated with bone loss, showed that SOS and mechanical properties were reduced perfectly linearly with apparent density when structure deteriorated. The 3D-printed bone replicas have the potential to enable systematic investigations of the influence of structure on both acoustical and mechanical properties and evaluate changes caused by bone loss. The development of replicas from materials with properties close to those of bone will permit quantitative conclusions for trabecular bone.
Collapse
Affiliation(s)
- Tsirigotis Athanasios
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| | - Apostolopoulos Konstantinos
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| | - Deligianni Despoina
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| |
Collapse
|
15
|
Dhingra S, Joshi A, Singh N, Saha S. Infection resistant polymer brush coating on the surface of biodegradable polyester. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111465. [DOI: 10.1016/j.msec.2020.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
|
16
|
Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, Gendviliene I, Locs J, Rutkunas V, Bukelskiene V. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater 2020; 104:103641. [PMID: 32174399 DOI: 10.1016/j.jmbbm.2020.103641] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
3D printing of polylactic acid (PLA) and hydroxyapatite (HA) or bioglass (BG) bioceramics composites is the most promising technique for artificial bone construction. However, HA and BG have different chemical composition as well as different bone regeneration inducing mechanisms. Thus, it is important to compare differentiation processes induced by 3D printed PLA + HA and PLA + BG scaffolds in order to evaluate the strongest osteoconductive and osteoinductive properties possessing bioceramics. In this study, we analysed porous PLA + HA (10%) and PLA + BG (10%) composites' effect on rat's dental pulp stem cells fate in vitro. Obtained results indicated, that PLA + BG scaffolds lead to weaker cell adhesion and proliferation than PLA + HA. Nevertheless, osteoinductive and other biofriendly properties were more pronounced by PLA + BG composites. Overall, the results showed a strong advantage of bioceramic BG against HA, thus, 3D printed PLA + BG composite scaffolds could be a perspective component for patient-specific, cheaper and faster artificial bone tissue production.
Collapse
Affiliation(s)
- Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania.
| | - Migle Kalvaityte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ieva Gendviliene
- Institute of Odontology, Faculty of Medicine, Vilnius University, Zalgirio Str. 115, LT-08217, Vilnius, Lithuania
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia
| | - Vygandas Rutkunas
- Institute of Odontology, Faculty of Medicine, Vilnius University, Zalgirio Str. 115, LT-08217, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
17
|
Micropatterning Method for Porous Materials Using the Difference of the Glass Transition Temperature between Exposed and Unexposed Areas of a Thick-Photoresist. MICROMACHINES 2019; 11:mi11010054. [PMID: 31906208 PMCID: PMC7019882 DOI: 10.3390/mi11010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
A cell culture on a scaffold has the advantages of functionality and easy handling, because the geometry of the cellular tissue is controlled by designing the scaffold. To create complex cellular tissue, scaffolds should be complex two-dimensional (2D) and three-dimensional (3D) structures. However, it is difficult to fabricate a scaffold with a 2D and 3D structure because the shape, size, and fabrication processes of a 2D structure in creating a cell layer, and a 3D structure containing cells, are different. In this research, we propose a micropatterning method for porous materials using the difference of the glass transition temperature between exposed and unexposed areas of a thick-photoresist. Since the proposed method does not require a vacuum, high temperature, or high voltage, it can be used for fabricating various structures with a wide range of scales, regardless of the materials used. Additionally, the patterning area can be fabricated accurately by photolithography. To evaluate the proposed method, a membrane integrated scaffold (MIS) with a 2D porous membrane and 3D porous material was fabricated. The MIS had a porous membrane with a pore size of 4 μm or less, which was impermeable to cells, and a porous material which was capable of containing cells. By seeding HUVECs and HeLa cells on each side of the MIS, the cellular tissue was formed with the designed geometry.
Collapse
|
18
|
Yang L, Wei J, Ma Z, Song P, Ma J, Zhao Y, Huang Z, Zhang M, Yang F, Wang X. The Fabrication of Micro/Nano Structures by Laser Machining. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1789. [PMID: 31888222 PMCID: PMC6956144 DOI: 10.3390/nano9121789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022]
Abstract
Micro/nano structures have unique optical, electrical, magnetic, and thermal properties. Studies on the preparation of micro/nano structures are of considerable research value and broad development prospects. Several micro/nano structure preparation techniques have already been developed, such as photolithography, electron beam lithography, focused ion beam techniques, nanoimprint techniques. However, the available geometries directly implemented by those means are limited to the 2D mode. Laser machining, a new technology for micro/nano structural preparation, has received great attention in recent years for its wide application to almost all types of materials through a scalable, one-step method, and its unique 3D processing capabilities, high manufacturing resolution and high designability. In addition, micro/nano structures prepared by laser machining have a wide range of applications in photonics, Surface plasma resonance, optoelectronics, biochemical sensing, micro/nanofluidics, photofluidics, biomedical, and associated fields. In this paper, updated achievements of laser-assisted fabrication of micro/nano structures are reviewed and summarized. It focuses on the researchers' findings, and analyzes materials, morphology, possible applications and laser machining of micro/nano structures in detail. Seven kinds of materials are generalized, including metal, organics or polymers, semiconductors, glass, oxides, carbon materials, and piezoelectric materials. In the end, further prospects to the future of laser machining are proposed.
Collapse
Affiliation(s)
- Liangliang Yang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangtao Wei
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Ma
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peishuai Song
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ma
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Zhao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Huang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Zhang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Yang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Academy of Quantum Information Science, Beijing 100193, China
- Beijing Engineering Research Center of Semiconductor Micro-Nano Integrated Technology, Beijing 100083, China
| | - Xiaodong Wang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (L.Y.); (J.W.); (Z.M.); (P.S.); (J.M.); (Y.Z.); (Z.H.); (M.Z.); (F.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Academy of Quantum Information Science, Beijing 100193, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Engineering Research Center of Semiconductor Micro-Nano Integrated Technology, Beijing 100083, China
| |
Collapse
|
19
|
Balčiūnas E, Dreižė N, Grubliauskaitė M, Urnikytė S, Šimoliūnas E, Bukelskienė V, Valius M, Baldock SJ, Hardy JG, Baltriukienė D. Biocompatibility Investigation of Hybrid Organometallic Polymers for Sub-Micron 3D Printing via Laser Two-Photon Polymerisation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3932. [PMID: 31783647 PMCID: PMC6926539 DOI: 10.3390/ma12233932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/20/2023]
Abstract
Hybrid organometallic polymers are a class of functional materials which can be used to produce structures with sub-micron features via laser two-photon polymerisation. Previous studies demonstrated the relative biocompatibility of Al and Zr containing hybrid organometallic polymers in vitro. However, a deeper understanding of their effects on intracellular processes is needed if a tissue engineering strategy based on these materials is to be envisioned. Herein, primary rat myogenic cells were cultured on spin-coated Al and Zr containing polymer surfaces to investigate how each material affects the viability, adhesion strength, adhesion-associated protein expression, rate of cellular metabolism and collagen secretion. We found that the investigated surfaces supported cellular growth to full confluency. A subsequent MTT assay showed that glass and Zr surfaces led to higher rates of metabolism than did the Al surfaces. A viability assay revealed that all surfaces supported comparable levels of cell viability. Cellular adhesion strength assessment showed an insignificantly stronger relative adhesion after 4 h of culture than after 24 h. The largest amount of collagen was secreted by cells grown on the Al-containing surface. In conclusion, the materials were found to be biocompatible in vitro and have potential for bioengineering applications.
Collapse
Affiliation(s)
- Evaldas Balčiūnas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Nadežda Dreižė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Monika Grubliauskaitė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Silvija Urnikytė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Egidijus Šimoliūnas
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Virginija Bukelskienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| | - Sara J. Baldock
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK;
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania; (E.B.); (N.D.); (M.G.); (S.U.); (E.Š.); (V.B.); (M.V.)
| |
Collapse
|
20
|
Batchelor R, Messer T, Hippler M, Wegener M, Barner-Kowollik C, Blasco E. Two in One: Light as a Tool for 3D Printing and Erasing at the Microscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904085. [PMID: 31420930 DOI: 10.1002/adma.201904085] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The ability to selectively remove sections from 3D-printed structures with high resolution remains a current challenge in 3D laser lithography. A novel photoresist is introduced to enable the additive fabrication of 3D microstructures at one wavelength and subsequent spatially controlled cleavage of the printed resist at another wavelength. The photoresist is composed of a difunctional acrylate cross-linker containing a photolabile o-nitrobenzyl ether moiety. 3D microstructures are written by photoinduced radical polymerization of acrylates using Ivocerin as photoinitiator upon exposure to 900 nm laser light. Subsequent scanning using a laser at 700 nm wavelength allows for the selective removal of the resist by photocleaving the o-nitrobenzyl group. Both steps rely on two-photon absorption. The fabricated and erased features are imaged using scanning electron microscopy (SEM) and laser scanning microscopy (LSM). In addition, a single wire bond is successfully eliminated from an array, proving the possibility of complete or partial removal of structures on demand.
Collapse
Affiliation(s)
- Rhiannon Batchelor
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany
| | - Tobias Messer
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131, Karlsruhe, Germany
| | - Marc Hippler
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131, Karlsruhe, Germany
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Martin Wegener
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., 4000, Brisbane, Queensland, Australia
| | - Eva Blasco
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany
| |
Collapse
|
21
|
Gupta D, Singh AK, Dravid A, Bellare J. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20437-20452. [PMID: 31081613 DOI: 10.1021/acsami.9b05460] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three-dimensional (3D) printing technology has seen several refinements when introduced in the field of medical devices and regenerative medicines. However, it is still a challenge to 3D print gels for building complex constructs as per the desired shape and size. Here, we present a novel method to 3D print gelatin/carboxymethylchitin/hydroxyapatite composite gel constructs of a complex shape. The objective of this study is to fabricate a bioactive gel scaffold with a controlled hierarchical structure. The hierarchy ranges from 3D outer shape to macroporosity to microporosity and rough surface. The fabrication process developed here uses 3D printing in a local cryogenic atmosphere, followed by lyophilization and cross-linking. The gel instantly freezes after extrusion on the cold plate. The cooling action is not limited to the build plate, but the entire gel scaffold is cooled during the 3D printing process. This enables the construction of a stable self-sustaining large-sized 3D complex geometry. Further, lyophilization introduces bulk microporosity into the scaffolds. The outer shape and macroporosity were controlled with the 3D printer, whereas the microporous structure and desirable rough surface morphology were obtained through lyophilization. With cryogenic 3D printing, up to 90% microporosity could be incorporated into the scaffolds. The microporosity and pore size distribution were controlled by changing the cross-linker and total polymer concentration, which resulted in six times increase in surface open pores of size <20 μm on increasing the cross-linker concentration from 25 to 100 mg/mL. The introduction of bulk microporosity was shown to increase swelling by 1.8 times along with a significant increase in human umbilical cord mesenchymal stem cells and Saos-2 cell attachment (2×), proliferation (2.4×), Saos-2 cell alkaline phosphatase level (2×), and mineralization (3×). The scaffolds are spongy in nature in a wet state, thus making them potential implants for bone cavities with a small opening. The application of these cryogenically 3D printed compressible gel scaffolds with multiscale porosity extends to a small- as well as a large-sized open/partially open patient-specific bone defect.
Collapse
Affiliation(s)
| | - Atul Kumar Singh
- Central Research Facility (CRF) , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Ashwin Dravid
- Chemical and Biomolecular Engineering , Johns Hopkins University , 323 E 33rd Street , Baltimore , Maryland 21218 , United States
| | | |
Collapse
|
22
|
|
23
|
Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257:1815-1822. [PMID: 30993457 DOI: 10.1007/s00417-019-04312-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The purpose of this paper is to provide an in-depth understanding of how to best utilize 3D printing in medicine, and more particularly in ophthalmology in order to enhance the clinicians' ability to provide out-of-the-box solutions for unusual challenges that require patient personalization. In this review, we discuss the main applications of 3D printing for diseases of the anterior and posterior segments of the eye and discuss their current status and implementation. We aim to raise awareness among ophthalmologists and report current and future developments. METHODS A computerized search from inception up to 2018 of the online electronic database PubMed was performed, using the following search strings: "3D," "printing," "ophthalmology," and "bioprinting." Additional data was extracted from relevant websites. The reference list in each relevant article was analyzed for additional relevant publications. RESULTS 3D printing first appeared three decades ago. Nevertheless, the implementation and utilization of this technology in healthcare became prominent only in the last 5 years. 3D printing applications in ophthalmology are vast, including organ fabrication, medical devices, production of customized prosthetics, patient-tailored implants, and production of anatomical models for surgical planning and educational purposes. CONCLUSIONS The potential applications of 3D printing in ophthalmology are extensive. 3D printing enables cost-effective design and production of instruments that aid in early detection of common ocular conditions, diagnostic and therapeutic devices built specifically for individual patients, 3D-printed contact lenses and intraocular implants, models that assist in surgery planning and improve patient and medical staff education, and more. Advances in bioprinting appears to be the future of 3D printing in healthcare in general, and in ophthalmology in particular, with the emerging possibility of printing viable tissues and ultimately the creation of a functioning cornea, and later retina. It is expected that the various applications of 3D printing in ophthalmology will become part of mainstream medicine.
Collapse
Affiliation(s)
- Adir C Sommer
- Department of Ophthalmology, Rambam Health Care Campus, 9602, 31096, Haifa, Israel
| | - Eytan Z Blumenthal
- Department of Ophthalmology, Rambam Health Care Campus, 9602, 31096, Haifa, Israel. .,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
24
|
Femtosecond Laser Fabrication of Engineered Functional Surfaces Based on Biodegradable Polymer and Biopolymer/Ceramic Composite Thin Films. Polymers (Basel) 2019; 11:polym11020378. [PMID: 30960362 PMCID: PMC6419159 DOI: 10.3390/polym11020378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 01/05/2023] Open
Abstract
Surface functionalization introduced by precisely-defined surface structures depended on the surface texture and quality. Laser treatment is an advanced, non-contact technique for improving the biomaterials surface characteristics. In this study, femtosecond laser modification was applied to fabricate diverse structures on biodegradable polymer thin films and their ceramic blends. The influences of key laser processing parameters like laser energy and a number of applied laser pulses (N) over laser-treated surfaces were investigated. The modification of surface roughness was determined by atomic force microscopy (AFM). The surface roughness (Rrms) increased from approximately 0.5 to nearly 3 µm. The roughness changed with increasing laser energy and a number of applied laser pulses (N). The induced morphologies with different laser parameters were compared via Scanning electron microscopy (SEM) and confocal microscopy analysis. The chemical composition of exposed surfaces was examined by FTIR, X-ray photoelectron spectroscopy (XPS), and XRD analysis. This work illustrates the capacity of the laser microstructuring method for surface functionalization with possible applications in improvement of cellular attachment and orientation. Cells exhibited an extended shape along laser-modified surface zones compared to non-structured areas and demonstrated parallel alignment to the created structures. We examined laser-material interaction, microstructural outgrowth, and surface-treatment effect. By comparing the experimental results, it can be summarized that considerable processing quality can be obtained with femtosecond laser structuring.
Collapse
|
25
|
Salmean C, Dimartino S. 3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3671-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Zhizhchenko A, Kuchmizhak A, Vitrik O, Kulchin Y, Juodkazis S. On-demand concentration of an analyte on laser-printed polytetrafluoroethylene. NANOSCALE 2018; 10:21414-21424. [PMID: 30427036 DOI: 10.1039/c8nr06119j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controllable targeted deposition of an analyte dissolved in a liquid drop evaporating on a superhydrophobic surface has recently emerged as a promising concentrator approach with various applications ranging from ultrasensitive bioidentification to DNA molecule sorting. Here, we demonstrate that surface textures with non-uniform wettability fabricated using direct easy-to-implement femtosecond-pulse filament-assisted ablation of polytetrafluoroethylene substrates can be used to concentrate and deposit an analyte at a designated location out of a water droplet. The proposed surface textures contain a central superhydrophilic trap surrounded by superhydrophobic periodically arranged pillars with a hierarchical roughness. By optimizing the arrangement and geometry of the central trap and the surrounding superhydrophobic textures, the analyte dissolved in a 5 μL water drop was fixed onto a 90 × 90 μm2 target. The proposed textures provide a concentration factor of 103, an order of magnitude higher than those for the previously reported surface textures. This promising ultrasensitive versatile platform allows the detection of fingerprints of the deposited analyte via surface-enhanced spectroscopy techniques (Raman scattering or photoluminescence) at an estimated detection threshold better than 10-15 mol L-1.
Collapse
Affiliation(s)
- Alexey Zhizhchenko
- Far Eastern Federal University, 8 Sukhanova str., Vladivostok 690041, Russia.
| | | | | | | | | |
Collapse
|
27
|
A versatile method for the UVA-induced cross-linking of acetophenone- or benzophenone-functionalized DNA. Sci Rep 2018; 8:16484. [PMID: 30405165 PMCID: PMC6220319 DOI: 10.1038/s41598-018-34892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Bioconjugation, biosensing, bioimaging, bionanomaterials, etc., are only a few examples of application of functionalized DNA. Since base-modified nucleic acids contribute not only to a broad range of biotechnological fields but also to the understanding of various cellular processes, it is crucial to design novel modifications with unique properties. Here, we demonstrate the utilization of N4-cytidine modified oligonucleotides, which contain reactive acetophenone (AP) or benzophenone (BP) groups, for the UV-induced cross-linking. We find that terminal deoxynucleotidyl transferase-mediated 3'-tailing using AP/BP-containing modified nucleotides generates photoactive DNA, suitable for a straightforward covalent cross-linking with both interacting proteins and a variety of well-known solid polymeric supports. Moreover, we show that AP/BP-functionalization of nucleic acid molecules induces an efficient cross-linking upon exposure to UVA light. Our findings reveal that 3'-tailed single-stranded DNA bearing AP/BP-moieties is easily photoimmobilized onto untreated polystyrene, polypropylene, polylactate, polydimethylsiloxane, sol-gel and borosilicate glass substrates. Furthermore, we demonstrate that such immobilized DNA probes can be further used for successful hybridization of complementary DNA targets. Our results establish novel N4-cytosine nucleobase modifications as photoreactive labels and suggest an effortless approach for photoimmobilization of nucleic acids.
Collapse
|
28
|
Alksne M, Simoliunas E, Kalvaityte M, Skliutas E, Rinkunaite I, Gendviliene I, Baltriukiene D, Rutkunas V, Bukelskiene V. The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells. J Biomed Mater Res A 2018; 107:174-186. [DOI: 10.1002/jbm.a.36547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Migle Kalvaityte
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Edvinas Skliutas
- Laser Research Center, Faculty of Physics; Vilnius University; Sauletekio Avenue 10, LT-10223, Vilnius Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Ieva Gendviliene
- Institute of Odontology, Faculty of Medicine; Vilnius University; Zalgirio Street 115, LT-08217, Vilnius Lithuania
| | - Daiva Baltriukiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Vygandas Rutkunas
- Institute of Odontology, Faculty of Medicine; Vilnius University; Zalgirio Street 115, LT-08217, Vilnius Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| |
Collapse
|
29
|
Arefin A, Mcculloch Q, Martinez R, Martin SA, Singh R, Ishak OM, Higgins EM, Haffey KE, Huang JH, Iyer S, Nath P, Iyer R, Harris JF. Micromachining of Polyurethane Membranes for Tissue Engineering Applications. ACS Biomater Sci Eng 2018; 4:3522-3533. [DOI: 10.1021/acsbiomaterials.8b00578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ayesha Arefin
- Nanoscience and Microsystems Department, University of New Mexico, MSC01 1120, 1 University of New Mexico, Albuquerque, New Mexico 87131, United States
- Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663 MS M888, Los Alamos, New Mexico 87545, United States
| | - Quinn Mcculloch
- Nanoscience and Microsystems Department, University of New Mexico, MSC01 1120, 1 University of New Mexico, Albuquerque, New Mexico 87131, United States
- MPA-CINT: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O.
Box 1663 MS K771, Los Alamos, New Mexico 87545, United States
| | - Ricardo Martinez
- MPA-CINT: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O.
Box 1663 MS K771, Los Alamos, New Mexico 87545, United States
| | - Simona A. Martin
- Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663 MS M888, Los Alamos, New Mexico 87545, United States
| | - Rohan Singh
- C-PCS: Physical Chemistry & Applied Spectroscopy, Los Alamos National Laboratory, P.O. Box 1663 MS J567, Los Alamos, New Mexico 87545, United States
| | - Omar M. Ishak
- Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663 MS M888, Los Alamos, New Mexico 87545, United States
| | - Erin M. Higgins
- Applied Modern Physics Division, Los Alamos National Laboratory, P.O. Box 1663 MS D454, Los Alamos, New Mexico 87545, United States
| | - Kiersten E. Haffey
- Applied Modern Physics Division, Los Alamos National Laboratory, P.O. Box 1663 MS D454, Los Alamos, New Mexico 87545, United States
| | - Jen-Huang Huang
- Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663 MS M888, Los Alamos, New Mexico 87545, United States
| | - Srinivas Iyer
- Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663 MS M888, Los Alamos, New Mexico 87545, United States
| | - Pulak Nath
- Applied Modern Physics Division, Los Alamos National Laboratory, P.O. Box 1663 MS D454, Los Alamos, New Mexico 87545, United States
| | - Rashi Iyer
- Systems Analysis and Surveillance Division, Los Alamos National Laboratory, P.O. Box
1663 MS C921, Los Alamos, New Mexico 87545, United States
| | - Jennifer F. Harris
- Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663 MS M888, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
30
|
Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E840. [PMID: 29783705 PMCID: PMC5978217 DOI: 10.3390/ma11050840] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022]
Abstract
Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.
Collapse
Affiliation(s)
- Joamin Gonzalez-Gutierrez
- Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| | - Santiago Cano
- Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| | - Stephan Schuschnigg
- Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| | - Christian Kukla
- Industrial Liaison Department, Montanuniversitaet Leoben, Peter Tunner Strasse 27, 8700 Leoben, Austria.
| | - Janak Sapkota
- Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| | - Clemens Holzer
- Polymer Processing, Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben, Austria.
| |
Collapse
|
31
|
|
32
|
3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:78-89. [PMID: 29549952 DOI: 10.1016/j.msec.2018.02.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/28/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Advanced scaffolds used in tissue regenerating applications should be designed to address clinically relevant complications such as surgical site infection associated with surgical procedures. Recognizing that patient-specific scaffolds with local drug delivery capabilities are a promising approach, we combined 3D printing with traditional salt-leaching techniques to prepare a new type of scaffold with purposely designed macro- and micro-porosity. The dual macro/micro porous scaffolds of medical-grade polycaprolactone (mPCL) were characterized for their porosity, surface area, mechanical properties and degradation. The use of these scaffolds for local prophylactic release of Cefazolin to inhibit S. aureus growth was investigated as an example of drug delivery with this versatile platform. The introduction of microporosity and increased surface area allowed for loading of the scaffold using a simple drop-loading method of this heat-labile antibiotic and resulted in significant improvement in its release for up to 3 days. The Cefazolin released from scaffolds retained its bioactivity similar to that of fresh Cefazolin. There were no cytotoxic effects in vitro against 3 T3 fibroblasts at Cefazolin concentration of up to 100 μg/ml and no apparent effects on blood clot formation on the scaffolds in vitro. This study therefore presents a novel type of scaffolds with dual macro- and micro-porosity manufactured by a versatile method of 3D printing combined with salt-leaching. These scaffolds could be useful in tissue regeneration applications where it is desirable to prevent complications using local delivery of drugs.
Collapse
|
33
|
Linklater DP, Juodkazis S, Ivanova EP. Nanofabrication of mechano-bactericidal surfaces. NANOSCALE 2017; 9:16564-16585. [PMID: 29082999 DOI: 10.1039/c7nr05881k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The search for alternatives to the standard methods of preventing bacterial adhesion and biofilm formation on biotic and abiotic surfaces alike has led to the use of biomimetics to reinvent through nanofabrication methods, surfaces, whereby the nanostructured topography is directly responsible for bacterial inactivation through physico-mechanical means. Plant leaves, insect wings, and animal skin have been used to inspire the fabrication of synthetic high-aspect-ratio nanopillared surfaces, which can resist bacterial colonisation. The adaptation of bacteria to survive in the presence of antibiotics and their ability to form biofilms on conventional antibacterial surfaces has led to an increase in persistent infections caused by resistant strains of bacteria. This presents a worldwide health epidemic that can only be mitigated through the search for a new generation of biomaterials.
Collapse
Affiliation(s)
- Denver P Linklater
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | |
Collapse
|
34
|
van Manen T, Janbaz S, Zadpoor AA. Programming 2D/3D shape-shifting with hobbyist 3D printers. MATERIALS HORIZONS 2017; 4:1064-1069. [PMID: 29308207 PMCID: PMC5735361 DOI: 10.1039/c7mh00269f] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/22/2017] [Indexed: 05/21/2023]
Abstract
Materials and devices with advanced functionalities often need to combine complex 3D shapes with functionality-inducing surface features. Precisely controlled bio-nanopatterns, printed electronic components, and sensors/actuators are all examples of such surface features. However, the vast majority of the refined technologies that are currently available for creating functional surface features work only on flat surfaces. Here we present initially flat constructs that upon triggering by high temperatures change their shape to a pre-programmed 3D shape, thereby enabling the combination of surface-related functionalities with complex 3D shapes. A number of shape-shifting materials have been proposed during the last few years based on various types of advanced technologies. The proposed techniques often require multiple fabrication steps and special materials, while being limited in terms of the 3D shapes they could achieve. The approach presented here is a single-step printing process that requires only a hobbyist 3D printer and inexpensive off-the-shelf materials. It also lends itself to a host of design strategies based on self-folding origami, instability-driven pop-up, and 'sequential' shape-shifting to unprecedentedly expand the space of achievable 3D shapes. This combination of simplicity and versatility is a key to widespread applications.
Collapse
Affiliation(s)
- Teunis van Manen
- Additive Manufacturing Laboratory , Department of Biomechanical Engineering , Delft University of Technology (TU Delft) , Mekelweg 2 , Delft 2628CD , The Netherlands . ; Tel: +31-15-2781021
| | - Shahram Janbaz
- Additive Manufacturing Laboratory , Department of Biomechanical Engineering , Delft University of Technology (TU Delft) , Mekelweg 2 , Delft 2628CD , The Netherlands . ; Tel: +31-15-2781021
| | - Amir A Zadpoor
- Additive Manufacturing Laboratory , Department of Biomechanical Engineering , Delft University of Technology (TU Delft) , Mekelweg 2 , Delft 2628CD , The Netherlands . ; Tel: +31-15-2781021
| |
Collapse
|
35
|
|
36
|
Vurugonda U, Rednam P, Sinha M. Development of biodegradable scaffold using polylactic acid and polycaprolactone for cardiovascular application. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1297945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Upender Vurugonda
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat, India
| | - PoornaJyothi Rednam
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat, India
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
37
|
Abstract
Single point incremental forming is used for rapid prototyping of sheet metal parts. This forming technology was applied to the fabrication of thin shell micropyramids of aluminum, stainless steel, and titanium foils. A single point tool used had a tip radius of 0.1 mm or 0.01 mm. An ultrasonic spindle with axial vibration was implemented for improving the shape accuracy of micropyramids formed on 5–12 micrometers-thick aluminum, stainless steel, and titanium foils. The formability was also investigated by comparing the forming limits of micropyramids of aluminum foil formed with and without ultrasonic vibration. The shapes of pyramids incrementally formed were truncated pyramids, twisted pyramids, stepwise pyramids, and star pyramids about 1 mm in size. A much smaller truncated pyramid was formed only for titanium foil for qualitative investigation of the size reduction on forming accuracy. It was found that the ultrasonic vibration improved the shape accuracy of the formed pyramids. In addition, laser heating increased the forming limit of aluminum foil and it is more effective when both the ultrasonic vibration and laser heating are applied.
Collapse
|
38
|
Souness A, Zamboni F, Walker GM, Collins MN. Influence of scaffold design on 3D printed cell constructs. J Biomed Mater Res B Appl Biomater 2017; 106:533-545. [DOI: 10.1002/jbm.b.33863] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Auryn Souness
- Department of Civil Engineering and Materials Science; University of Limerick; Limerick Ireland
| | - Fernanda Zamboni
- Stokes Laboratories, Bernal Institute; University of Limerick; Limerick Ireland
| | - Gavin M Walker
- Bernal Institute; University of Limerick; Limerick Ireland
| | - Maurice N Collins
- Stokes Laboratories, Bernal Institute; University of Limerick; Limerick Ireland
| |
Collapse
|
39
|
Lee SJ, Zhu W, Heyburn L, Nowicki M, Harris B, Zhang LG. Development of Novel 3-D Printed Scaffolds With Core-Shell Nanoparticles for Nerve Regeneration. IEEE Trans Biomed Eng 2017; 64:408-418. [DOI: 10.1109/tbme.2016.2558493] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Yu R, Yang X, Zhang Y, Zhao X, Wu X, Zhao T, Zhao Y, Huang W. Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1820-1829. [PMID: 28009155 DOI: 10.1021/acsami.6b13531] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four-dimensional printing, a new process to fabricate active materials through three-dimensional (3D) printing developed by MIT's Self-Assembly Lab in 2014, has attracted more and more research and development interests recently. In this paper, a type of epoxy-acrylate hybrid photopolymer was synthesized and applied to fabricate shape memory polymers through a stereolithography 3D printing technique. The glass-to-rubbery modulus ratio of the printed sample determined by dynamic mechanical analysis is as high as 600, indicating that it may possess good shape memory properties. Fold-deploy and shape memory cycle tests were applied to evaluate its shape memory performance. The shape fixity ratio and the shape recovery ratio in ten cycles of fold-deploy tests are about 99 and 100%, respectively. The shape recovery process takes less than 20 s, indicating its rapid shape recovery rate. The shape fixity ratio and shape recovery ratio during 18 consecutive shape memory cycles are 97.44 ± 0.08 and 100.02 ± 0.05%, respectively, showing that the printed sample has high shape fixity ratio, shape recovery ratio, and excellent cycling stability. A tensile test at 62 °C demonstrates that the printed samples combine a relatively large break strain of 38% with a large recovery stress of 4.7 MPa. Besides, mechanical and thermal stability tests prove that the printed sample has good thermal stability and mechanical properties, including high strength and good toughness.
Collapse
Affiliation(s)
- Ran Yu
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Xin Yang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Ying Zhang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Xiaojuan Zhao
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Xiao Wu
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Tingting Zhao
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yulei Zhao
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Wei Huang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|
41
|
Mačiulaitis J, Rekštytė S, Ūsas A, Jankauskaitė V, Gudas R, Malinauskas M, Mačiulaitis R. Characterization of tissue engineered cartilage products: Recent developments in advanced therapy. Pharmacol Res 2016; 113:823-832. [DOI: 10.1016/j.phrs.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
|
42
|
Kim SE, Kim MS, Shin YC, Eom SU, Lee JH, Shin DM, Hong SW, Kim B, Park JC, Shin BS, Lim D, Han DW. Cell Migration According to Shape of Graphene Oxide Micropatterns. MICROMACHINES 2016; 7:mi7100186. [PMID: 30404359 PMCID: PMC6189709 DOI: 10.3390/mi7100186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022]
Abstract
Photolithography is a unique process that can effectively manufacture micro/nano-sized patterns on various substrates. On the other hand, the meniscus-dragging deposition (MDD) process can produce a uniform surface of the substrate. Graphene oxide (GO) is the oxidized form of graphene that has high hydrophilicity and protein absorption. It is widely used in biomedical fields such as drug delivery, regenerative medicine, and tissue engineering. Herein, we fabricated uniform GO micropatterns via MDD and photolithography. The physicochemical properties of the GO micropatterns were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. Furthermore, cell migration on the GO micropatterns was investigated, and the difference in cell migration on triangle and square GO micropatterns was examined for their effects on cell migration. Our results demonstrated that the GO micropatterns with a desired shape can be finely fabricated via MDD and photolithography. Moreover, it was revealed that the shape of GO micropatterns plays a crucial role in cell migration distance, speed, and directionality. Therefore, our findings suggest that the GO micropatterns can serve as a promising biofunctional platform and cell-guiding substrate for applications to bioelectric devices, cell-on-a-chip, and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Min Sung Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Yong Cheol Shin
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Seong Un Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Jong Ho Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Dong-Myeong Shin
- Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Korea.
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Bongju Kim
- Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul 03080, Korea.
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Bo Sung Shin
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
43
|
Rouwkema J, Khademhosseini A. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol 2016; 34:733-745. [DOI: 10.1016/j.tibtech.2016.03.002] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
|
44
|
Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S. Ultrafast laser processing of materials: from science to industry. LIGHT, SCIENCE & APPLICATIONS 2016; 5:e16133. [PMID: 30167182 PMCID: PMC5987357 DOI: 10.1038/lsa.2016.133] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 05/05/2023]
Abstract
Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1-1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Collapse
Affiliation(s)
- Mangirdas Malinauskas
- Laser Research Centre, Department of Quantum Electronics, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Albertas Žukauskas
- Laser Research Centre, Department of Quantum Electronics, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Satoshi Hasegawa
- Center for Optical Research and Education (CORE), Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Yoshio Hayasaki
- Center for Optical Research and Education (CORE), Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Vygantas Mizeikis
- Research Institute of Electronics, Shizuoka University, 3-5-3-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Ričardas Buividas
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Melbourne Centre for Nanofabrication, ANFF, 151 Wellington Road, Clayton, VIC 3168, Australia
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 2016; 57:139-48. [DOI: 10.1016/j.jmbbm.2015.11.036] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
|
46
|
Garskaite E, Alinauskas L, Drienovsky M, Krajcovic J, Cicka R, Palcut M, Jonusauskas L, Malinauskas M, Stankeviciute Z, Kareiva A. Fabrication of a composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW). RSC Adv 2016. [DOI: 10.1039/c6ra11679e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fabrication of a polylactic acid (PLA)–carbonated hydroxyapatite (cHAP) composite material from synthesised phase pure nano-cHAP and melted PLA by mechanical mixing at 220–235 °C has been developed in this study.
Collapse
|
47
|
Morikawa J, Ryu M, Maximova K, Balčytis A, Seniutinas G, Fan L, Mizeikis V, Li J, Wang X, Zamengo M, Wang X, Juodkazis S. Silk fibroin as a water-soluble bio-resist and its thermal properties. RSC Adv 2016. [DOI: 10.1039/c5ra20201a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
E-beam exposure unzips beta-sheets in crystalline domains of silk fibroin and makes it water-soluble, enabling its usage as an aqueous-based electron beam lithography resist.
Collapse
|
48
|
Jia W, Luo Y, Yu J, Liu B, Hu M, Chai L, Wang C. Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA). OPTICS EXPRESS 2015; 23:26932-26939. [PMID: 26480354 DOI: 10.1364/oe.23.026932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of femtosecond laser ablation, with 115 fs pulses at 1040 nm wavelength and 57 MHz repetition-rate, on the physical and chemical properties of polylactide (PLA) were studied in air and in water. The surface of the PLA sample ablated by high-repetition-rate femtosecond laser was analysed using field emission scanning electron microscopy, infrared spectroscopy, raman spectroscopy, as well as X-ray photoelectron spectroscopy. Compared with the experiments in the air at ambient temperature, melting resolidification was negligible for the experiments conducted under water. Neither in air nor under water did oxidation and crystallization process take place in the laser ablated surface. In addition, the intensity of some oxygen related peaks increased for water experiments, probably due to the hydrolysis. Meantime, the chemical shift to higher energies appeared in C1s XPS spectrum of laser processing in water. Interestingly, a large amount of defects were observed after laser processing in air, while no significant change was shown under water experiments. This indicates that thermal and mechanical effects by high-repetition-rate femtosecond laser ablation in water are quite limited, which could be even ignored.
Collapse
|
49
|
Mačiulaitis J, Deveikytė M, Rekštytė S, Bratchikov M, Darinskas A, Šimbelytė A, Daunoras G, Laurinavičienė A, Laurinavičius A, Gudas R, Malinauskas M, Mačiulaitis R. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 2015; 7:015015. [PMID: 25797444 DOI: 10.1088/1758-5090/7/1/015015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patient's specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering.
Collapse
Affiliation(s)
- Justinas Mačiulaitis
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian Health Science University, Mickevičiaus 9, LT 44307 Kaunas, Lithuania. Institute of Sports, Medical Academy, Lithuanian University of Health Science, Kalniečių 231, LT 44307 Kaunas, Lithuania. Orthopaedic and Trauma Department, Lithuanian Health Science University, Mickevičiaus 9, LT 44307 Kaunas, Lithuania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|