1
|
Huang S, An Y, Xi B, Gong X, Chen Z, Shao S, Ge S, Zhang J, Zhang D, Xia N. Ultra-fast, sensitive and low-cost real-time PCR system for nucleic acid detection. LAB ON A CHIP 2023; 23:2611-2622. [PMID: 37158116 DOI: 10.1039/d3lc00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleic acid detection directly identifies the presence of pathogenic microorganisms and has various advantages, such as high sensitivity, commendable specificity and a short window period, and has been widely used in many fields, such as early tumor screening, prenatal diagnosis and infectious disease detection. Real-time PCR (polymerase chain reaction) is the most commonly used method for nucleic acid detection in clinical practice, but it always takes about 1-3 hours, severely limiting its application in particular scenarios such as emergency testing, large-scale testing and on-site testing. To solve the time-consuming problem, a real-time PCR system based on multiple temperature zones was proposed, which realized the speed of temperature change of biological reagents from 2-4 °C s-1 to 13.33 °C s-1. The system integrates the advantages of fixed microchamber-type and microchannel-type amplification systems, including a microfluidic chip capable of fast heat transfer and a real-time PCR device with a temperature control strategy based on the temperature difference. The detection of HCMV biological samples using the real-time PCR system in this research took only 15 min, which was 75% shorter compared to the commercial qPCR instrument such as BIO-RAD, and the detection sensitivity remained essentially the same. The system could complete nucleic acid detection within 9 min under extreme conditions, characterized by fast detection speed and high sensitivity, providing a promising solution for ultra-fast nucleic acid detection.
Collapse
Affiliation(s)
- Shaolei Huang
- School of Public Health, Xiamen University, Fujian, China.
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Yiquan An
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Bangchao Xi
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Xianglian Gong
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Zhongfu Chen
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Shan Shao
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Shengxiang Ge
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Jun Zhang
- School of Public Health, Xiamen University, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Dongxu Zhang
- School of Public Health, Xiamen University, Fujian, China.
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| | - Ningshao Xia
- School of Public Health, Xiamen University, Fujian, China.
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases (Xiamen University), Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Fujian, China
| |
Collapse
|
2
|
An YQ, Huang SL, Xi BC, Gong XL, Ji JH, Hu Y, Ding YJ, Zhang DX, Ge SX, Zhang J, Xia NS. Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification. MICROMACHINES 2023; 14:mi14030658. [PMID: 36985065 PMCID: PMC10058542 DOI: 10.3390/mi14030658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 05/25/2023]
Abstract
The polymerase chain reaction (PCR) is essential in nucleic acid amplification tests and is widely used in many applications such as infectious disease detection, tumor screening, and food safety testing; however, most PCR devices have inefficient heating and cooling ramp rates for the solution, which significantly limit their application in special scenarios such as hospital emergencies, airports, and customs. Here, we propose a temperature control strategy to significantly increase the ramp rates for the solution temperature by switching microfluidic chips between multiple temperature zones and excessively increasing the temperature difference between temperature zones and the solution; accordingly, we have designed an ultrafast thermocycler. The results showed that the ramp rates of the solution temperature are a linear function of temperature differences within a range, and a larger temperature difference would result in faster ramp rates. The maximum heating and cooling ramp rates of the 25 μL solution reached 24.12 °C/s and 25.28 °C/s, respectively, and the average ramp rate was 13.33 °C/s, 6-8 times higher than that of conventional commercial PCR devices. The thermocycler achieved 9 min (1 min pre-denaturation + 45 PCR cycles) ultrafast nucleic acid amplification, shortening the time by 92% compared to the conventional 120 min nucleic acid amplification, and has the potential to be used for rapid nucleic acid detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong-Xu Zhang
- Correspondence: (D.-X.Z.); (S.-X.G.); (J.Z.); (N.-S.X.); Tel.: +86-2-183-111 (N.-S.X.)
| | - Sheng-Xiang Ge
- Correspondence: (D.-X.Z.); (S.-X.G.); (J.Z.); (N.-S.X.); Tel.: +86-2-183-111 (N.-S.X.)
| | - Jun Zhang
- Correspondence: (D.-X.Z.); (S.-X.G.); (J.Z.); (N.-S.X.); Tel.: +86-2-183-111 (N.-S.X.)
| | - Ning-Shao Xia
- Correspondence: (D.-X.Z.); (S.-X.G.); (J.Z.); (N.-S.X.); Tel.: +86-2-183-111 (N.-S.X.)
| |
Collapse
|
3
|
Chen JJ, Lin ZH. Fabrication of an Oscillating Thermocycler to Analyze the Canine Distemper Virus by Utilizing Reverse Transcription Polymerase Chain Reaction. MICROMACHINES 2022; 13:mi13040600. [PMID: 35457905 PMCID: PMC9026093 DOI: 10.3390/mi13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
The reverse transcription-polymerase chain reaction (RT-PCR) has been utilized as an effective tool to diagnose the infectious diseases of viruses. In the present work, the oscillating thermocycler is fabricated and performed to carry out the one-step RT-PCR process successfully. The ribonucleic acid (RNA) mixture is pipetted into the fixed sample volume inside an aluminum reaction block. The sample oscillates the pathway onto the linear motion control system and through the specific RT-PCR heating zones with individual homemade thermal control modules. The present oscillating thermocycler combines the merits of the chamber type and the CF type systems. Before PCR, the reaction chamber moves to the low-temperature zone to complete the RT stage and synthesize the complementary deoxyribonucleic acid (DNA). Next, the low-temperature zone is regulated to the annealing zone. Furthermore, the reactive sample is moved back and forth among three isothermal zones to complete PCR. No extra heating zone is required for the RT stage. The total length of the moving displacement of the chamber is within 100 mm. The miniaturization of the oscillating thermocycler can be expected. In our oscillatory device, the denaturation zone located between the annealing and extension zones is suggested as the appropriate arrangement of the heating blocks. Heat management without thermal cross-talk is easy. Finally, an improved oscillating device is demonstrated to execute the RT-PCR process directly, utilized to amplify the canine distemper virus templates successfully, which could be well applied to a low-cost DNA analysis system in the future.
Collapse
|