1
|
Wright DN, Züchner M, Annavini E, Escalona MJ, Hammerlund Teige L, Whist Tvedt LG, Lervik A, Haga HA, Guiho T, Clausen I, Glott T, Boulland JL. From wires to waves, a novel sensor system for in vivo pressure monitoring. Sci Rep 2024; 14:7570. [PMID: 38555360 PMCID: PMC10981663 DOI: 10.1038/s41598-024-58019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Pressure monitoring in various organs of the body is essential for appropriate diagnostic and therapeutic purposes. In almost all situations, monitoring is performed in a hospital setting. Technological advances not only promise to improve clinical pressure monitoring systems, but also engage toward the development of fully implantable systems in ambulatory patients. Such systems would not only provide longitudinal time monitoring to healthcare personnel, but also to the patient who could adjust their way-of-life in response to the measurements. In the past years, we have developed a new type of piezoresistive pressure sensor system. Different bench tests have demonstrated that it delivers precise and reliable pressure measurements in real-time. The potential of this system was confirmed by a continuous recording in a patient that lasted for almost a day. In the present study, we further characterized the functionality of this sensor system by conducting in vivo implantation experiments in nine female farm pigs. To get a step closer to a fully implantable system, we also adapted two different wireless communication solutions to the sensor system. The communication protocols are based on MICS (Medical Implant Communication System) and BLE (Bluetooth Low Energy) communication. As a proof-of-concept, implantation experiments in nine female pigs demonstrated the functionality of both systems, with a notable technical superiority of the BLE.
Collapse
Affiliation(s)
| | - Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317, Oslo, Norway
| | - Eis Annavini
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317, Oslo, Norway
| | - Manuel J Escalona
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317, Oslo, Norway
- Department for Immunology, Clinic for Laboratory Medicine, Oslo University Hospital-Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Lena Hammerlund Teige
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317, Oslo, Norway
- Department for Immunology, Clinic for Laboratory Medicine, Oslo University Hospital-Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Lars Geir Whist Tvedt
- Department of Microsystems and Nanotechnology, SINTEF AS, Oslo, Norway
- InVivo Bionics AS, Oslo, Norway
| | - Andreas Lervik
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Ingelin Clausen
- Department of Microsystems and Nanotechnology, SINTEF AS, Oslo, Norway
- InVivo Bionics AS, Oslo, Norway
| | - Thomas Glott
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Jean-Luc Boulland
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317, Oslo, Norway.
- Department for Immunology, Clinic for Laboratory Medicine, Oslo University Hospital-Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
| |
Collapse
|
2
|
Han C, Huang J, Zhangji A, Tong X, Yu K, Chen K, Liu X, Yang Y, Chen Y, Ali Memon W, Amin K, Gao W, Deng Z, Zhou K, Wang Y, Qi X. Accelerated Skin Wound Healing Using Flexible Photovoltaic-Bioelectrode Electrical Stimulation. MICROMACHINES 2022; 13:mi13040561. [PMID: 35457866 PMCID: PMC9032666 DOI: 10.3390/mi13040561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Owing to the complex and long-term treatment of foot wounds due to diabetes and the limited mobility of patients, advanced clinical surgery often uses wearable flexible devices for auxiliary treatment. Therefore, there is an urgent need for self-powered biomedical devices to reduce the extra weight. We have prepared an electrically stimulated MEMS (Micro Electromechanical System) electrode integrated with wearable OPV (Organic photovoltaic). The wearable OPV is constructed of a bio-affinity PET-ITO substrate and a hundred-nanometer organic layer. Under sunlight and near-infrared light irradiation, a voltage and current are supplied to the MEMS electrode to generate an exogenous lateral electric field directed to the center of the wound. The results of in vitro cell experiments and diabetic skin-relieving biological experiments showed the proliferation of skin fibroblasts and the expression of transforming growth factors increased, and the skin wounds of diabetic mouse healed faster. Our research provides new insights for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Chao Han
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China;
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China;
| | - Aodi Zhangji
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China;
| | - Xufeng Tong
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Kaige Yu
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Kai Chen
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Xinlan Liu
- Medical College, Ningbo University, Ningbo 315000, China;
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Yang Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, China;
| | - Yuxin Chen
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Correspondence: (Y.C.); (Y.W.); (X.Q.)
| | - Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (W.A.M.); (K.A.)
| | - Kamran Amin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (W.A.M.); (K.A.)
| | - Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
- Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Yuheng Wang
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; (X.T.); (K.Y.); (K.C.); (W.G.)
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (Y.C.); (Y.W.); (X.Q.)
| | - Xiangdong Qi
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China;
- Correspondence: (Y.C.); (Y.W.); (X.Q.)
| |
Collapse
|
3
|
Coffel J, Nuxoll E. BioMEMS for biosensors and closed-loop drug delivery. Int J Pharm 2018; 544:335-349. [PMID: 29378239 DOI: 10.1016/j.ijpharm.2018.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed.
Collapse
Affiliation(s)
- Joel Coffel
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|