1
|
Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, Al-Douri Y, Algamili AS, Bature UI, Alabsi SS, Sabbea MOB, Junaid M. A review of piezoelectric MEMS sensors and actuators for gas detection application. NANOSCALE RESEARCH LETTERS 2023; 18:25. [PMID: 36847870 DOI: 10.1186/s11671-023-03779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Collapse
Affiliation(s)
- Saeed S Ba Hashwan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Mohd Haris Md Khir
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Illani Mohd Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohamad Radzi Ahmad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mehwish Hanif
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Furqan Zahoor
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, 34940, Tuzla, Istanbul, Turkey
- Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Saleh Algamili
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Usman Isyaku Bature
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Sami Sultan Alabsi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohammed O Ba Sabbea
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
2
|
Yan X, Qu H, Chang Y, Duan X. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Wang JL, Guo YJ, Long GD, Tang YL, Tang QB, Zu XT, Ma JY, Du B, Torun H, Fu YQ. Integrated sensing layer of bacterial cellulose and polyethyleneimine to achieve high sensitivity of ST-cut quartz surface acoustic wave formaldehyde gas sensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121743. [PMID: 31836372 DOI: 10.1016/j.jhazmat.2019.121743] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Surface acoustic wave (SAW)-based formaldehyde gas sensor using bi-layer nanofilms of bacterial cellulose (BC) and polyethyleneimine (PEI) was developed on an ST-cut quartz substrate using sol-gel and spin coating processes. BC nanofilms significantly improve the sensitivity of PEI films to formaldehyde gas, and reduces response and recovery times. The BC films have superfine filamentary and fibrous network structures, which provide a large number of attachment sites for the PEI particles. Measurement results obtained using in situ diffuse reflectance Fourier transform infrared spectroscopy showed that the primary amino groups of PEI strongly adsorb formaldehyde molecules through nucleophilic reactions, thus resulting in a negative frequency shift of the SAW sensor due to the mass loading effect. In addition, experimental results showed that the frequency shifts of the SAW devices are determined by thickness of PEI film, concentration of formaldehyde and relative humidity. The PEI/BC sensor coated with three layers of PEI as the sensing layer showed the optimal sensing performance, which had a frequency shift of 35.6 kHz for 10 ppm formaldehyde gas, measured at room temperature and 30 % RH. The sensor also showed good selectivity and stability, with a low limit of detection down to 100 ppb.
Collapse
Affiliation(s)
- J L Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Y J Guo
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - G D Long
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Y L Tang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Q B Tang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - X T Zu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - J Y Ma
- Sichuan Institute of Piezoelectric and Acousto-Optic Technology, Chongqing, 400060, PR China
| | - B Du
- Sichuan Institute of Piezoelectric and Acousto-Optic Technology, Chongqing, 400060, PR China
| | - H Torun
- Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - Y Q Fu
- Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
4
|
Rajak A, Hapidin DA, Iskandar F, Munir MM, Khairurrijal K. Electrospun nanofiber from various source of expanded polystyrene (EPS) waste and their characterization as potential air filter media. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 103:76-86. [PMID: 31865038 DOI: 10.1016/j.wasman.2019.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 05/29/2023]
Abstract
This paper reported on the fabrication of nanofibrous membranes from various sources of expanded polystyrene (EPS) waste using electrospinning technique and their application as air filter media. The filter membranes were made from four EPS waste sources, i.e. food packaging, EPS craft, instant noodle cup, and electronic packaging. The properties of the membranes fabricated from those sources were compared to obtain the best EPS waste source for air filter application. To make the precursor solutions, those samples were dissolved in d-limonene:DMF with the concentration of 15, 20, and 25 wt%. The solid EPS density, solution viscosity, and surface tension were measured. The fiber diameter and morphology of nanofibers were characterized by scanning electron microscopy (SEM) for each EPS variation. The fabricated membrane properties (crystallinity, wettability, and mechanical strength) and filtration properties (pressure drop, PM2.5 filtration efficiency, and quality factor) were fully characterized and analyzed. Homogeneous fiber diameter with various morphologies (beaded, wrinkled, and smooth fiber) were obtained from all samples with hydrophobic to super-hydrophobic surface (water contact angle ranging from 106 to 153°). Also, the EPS solid density affected the solution viscosity with the expression of η = 0.132 ρ0.29, which then affected the fabricated membrane packing density, porosity, and mechanical properties. Overall, the experimental results showed that all EPS nanofiber filters had great potential as an air filter media. The EPS filter made from food packaging waste with the solution concentration of 15 wt% exhibited the highest efficiency and quality factor of 99.99% and 0.15 Pa-1, respectively.
Collapse
Affiliation(s)
- Abdul Rajak
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Sciences, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Lampung Selatan 35365, Indonesia
| | - Dian Ahmad Hapidin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Muhammad Miftahul Munir
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia.
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institute for Research and Community Services, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| |
Collapse
|
5
|
Low-Concentration Ammonia Gas Sensors Manufactured Using the CMOS-MEMS Technique. MICROMACHINES 2020; 11:mi11010092. [PMID: 31952151 PMCID: PMC7019987 DOI: 10.3390/mi11010092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 11/16/2022]
Abstract
This study describes the fabrication of an ammonia gas sensor (AGS) using a complementary metal oxide semiconductor (CMOS)–microelectromechanical system (MEMS) technique. The structure of the AGS features interdigitated electrodes (IDEs) and a sensing material on a silicon substrate. The IDEs are the stacked aluminum layers that are made using the CMOS process. The sensing material; polypyrrole/reduced graphene oxide (PPy/RGO), is synthesized using the oxidation–reduction method; and the material is characterized using an electron spectroscope for chemical analysis (ESCA), a scanning electron microscope (SEM), and high-resolution X-ray diffraction (XRD). After the CMOS process; the AGS needs post-processing to etch an oxide layer and to deposit the sensing material. The resistance of the AGS changes when it is exposed to ammonia. A non-inverting amplifier circuit converts the resistance of the AGS into a voltage signal. The AGS operates at room temperature. Experiments show that the AGS response is 4.5% at a concentration of 1 ppm NH3; and it exhibits good repeatability. The lowest concentration that the AGS can detect is 0.1 ppm NH3
Collapse
|
6
|
Cabbage-shaped zinc-cobalt oxide (ZnCo 2O 4) sensing materials: Effects of zinc ion substitution and enhanced formaldehyde sensing properties. J Colloid Interface Sci 2018; 537:520-527. [PMID: 30471609 DOI: 10.1016/j.jcis.2018.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 01/26/2023]
Abstract
Exploiting chemical sensors (CSs) with high-activity sensitive materials is very important for the detection of volatile organic compounds (VOCs). Co-containing spinel oxides are potential candidates for sensing layers. However, the intrinsic activity always hinders their further progress of sensing performances such as sensitivity and selectivity. Here, a facile strategy is successfully developed for the substitution of Co cations into Zn cations in Co3O4 without sacrificing multi-shelled hollow structure. The synthesized cabbage-shaped ZnCo2O4 exhibited the enhanced formaldehyde sensing capability compared to the Co3O4 counterpart. The sensitivity to 100 ppm formaldehyde for ZnCo2O4-sensors is 7.4 at 180 °C, which is 6.2 times higher than that of Co3O4-sensors. In addition, the ZnCo2O4-sensors also show the fast response/recovery time (9/12 s) compared to Co3O4-sensors (55/63 s). Interestingly, Zn2+ introduction can facilitate the accumulation of holes and generate more defective oxygen and adsorbed oxygen effectively. Consequently, remarkably improved sensitivity, selectively and fast response/recovery process are demonstrated for the ZnCo2O4-based sensors. The results offer crucial insights in realization of highly sensitive spinel oxide materials for CSs.
Collapse
|