1
|
Truong TA, Huang X, Barton M, Ashok A, Al Abed A, Almasri R, Shivdasanic MN, Reshamwala R, Ingles J, Thai MT, Nguyen CC, Zhao S, Zhang X, Gu Z, Vasanth A, Peng S, Nguyen TK, Do N, Nguyen NT, Zhao H, Phan HP. Flexible Electrode Arrays Based on a Wide Bandgap Semiconductors for Chronic Implantable Multiplexed Sensing and Heart Pacemakers. ACS NANO 2025; 19:1642-1659. [PMID: 39752298 DOI: 10.1021/acsnano.4c15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals. This study introduces a multielectrode array featuring a wide bandgap (WBG) material as electrodes, demonstrating its suitability for chronic implantable applications. Our devices exhibit excellent flexibility and longevity, taking advantage of the low bending stiffness and chemical inertness in WBG nanomembranes and multimodalities for physical health monitoring, including temperature, strain, and impedance sensing. Our top-down manufacturing process enables the formation of distributed electrode arrays that can be seamlessly integrated onto the curvilinear surfaces of skins. As proof of concept for chronic cardiac pacing applications, we demonstrate the effective pacing functionality of our devices on rabbit hearts through a set of ex vivo experiments. The engineering approach proposed in this study overcomes the drawbacks of prior WBG material fabrication techniques, resulting in an implantable system with high bendability, effective pacing, and high-performance sensing.
Collapse
Affiliation(s)
- Thanh An Truong
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew Barton
- School of Nursing & Midwifery, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Reem Almasri
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mohit N Shivdasanic
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ronak Reshamwala
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Joshua Ingles
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland 4215, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- College of Engineering and Computer Science and VinUni-Illinois Smart Health Center, Vin University, Hanoi 100000, Vietnam
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xiuwen Zhang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for Nanomedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Arya Vasanth
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Nho Do
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Queensland 4111, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Montero-Arevalo B, Seufert BI, Hossain MS, Bernardin E, Takshi A, Saddow SE, Schettini N. SiC Electrochemical Sensor Validation for Alzheimer Aβ 42 Antigen Detection. MICROMACHINES 2023; 14:1262. [PMID: 37374847 DOI: 10.3390/mi14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aβ42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aβ42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aβ1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aβ42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aβ42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.
Collapse
Affiliation(s)
- Brayan Montero-Arevalo
- Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Bianca I Seufert
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Mohammad S Hossain
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Evans Bernardin
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Arash Takshi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Stephen E Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Norelli Schettini
- Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
3
|
La Via F, Alquier D, Giannazzo F, Kimoto T, Neudeck P, Ou H, Roncaglia A, Saddow SE, Tudisco S. Emerging SiC Applications beyond Power Electronic Devices. MICROMACHINES 2023; 14:1200. [PMID: 37374785 PMCID: PMC10300968 DOI: 10.3390/mi14061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
In recent years, several new applications of SiC (both 4H and 3C polytypes) have been proposed in different papers. In this review, several of these emerging applications have been reported to show the development status, the main problems to be solved and the outlooks for these new devices. The use of SiC for high temperature applications in space, high temperature CMOS, high radiation hard detectors, new optical devices, high frequency MEMS, new devices with integrated 2D materials and biosensors have been extensively reviewed in this paper. The development of these new applications, at least for the 4H-SiC ones, has been favored by the strong improvement in SiC technology and in the material quality and price, due to the increasing market for power devices. However, at the same time, these new applications need the development of new processes and the improvement of material properties (high temperature packages, channel mobility and threshold voltage instability improvement, thick epitaxial layers, low defects, long carrier lifetime, low epitaxial doping). Instead, in the case of 3C-SiC applications, several new projects have developed material processes to obtain more performing MEMS, photonics and biomedical devices. Despite the good performance of these devices and the potential market, the further development of the material and of the specific processes and the lack of several SiC foundries for these applications are limiting further development in these fields.
Collapse
Affiliation(s)
| | - Daniel Alquier
- GREMAN, UMR 7347, Université de Tours, CNRS, 37071 Tours, France;
| | | | - Tsunenobu Kimoto
- Department of Electronic Science and Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan;
| | - Philip Neudeck
- NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA;
| | - Haiyan Ou
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, DK-2800 Kgs. Lyngby, Denmark;
| | | | - Stephen E. Saddow
- Electrical Engineering Department, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, FL 33620, USA;
| | | |
Collapse
|
4
|
Fathi F, Sueoka B, Zhao F, Zeng X. Nitrogen-Doped 4H Silicon Carbide Single-Crystal Electrode for Selective Electrochemical Sensing of Dopamine. Anal Chem 2023; 95:4855-4862. [PMID: 36893723 DOI: 10.1021/acs.analchem.2c03609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this work, we designed, fabricated, and characterized the first nitrogen (N)-doped single-crystalline 4H silicon carbide (4H-SiC) electrode for sensing the neurotransmitter dopamine. This N-doped 4H-SiC electrode showed good selectivity for redox reactions of dopamine in comparison with uric acid (UA), ascorbic acid (AA), and common cationic ([Ru(NH3)6]3+), anionic ([Fe(CN)6]3-), and organic (methylene blue) redox molecules. The mechanisms of this unique selectivity are rationalized by the unique negative Si valency and adsorption properties of the analytes on the N-doped 4H-SiC surface. Quantitative electrochemical detection of dopamine by the 4H-SiC electrode was achieved in the linear range from 50 nM to 10 μM with a detection limit of 0.05 μM and a sensitivity of 3.2 nA.μM-1 in a pH = 7.4 phosphate buffer solution. In addition, the N-doped 4H-SiC electrode demonstrated excellent electrochemical stability. This work forms the foundation for developing 4H-SiC as the next-generation robust and biocompatible neurointerface material for a broad range of applications such as the in vivo sensing of neurotransmitters.
Collapse
Affiliation(s)
- Fatemeh Fathi
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Brandon Sueoka
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, Washington 98686, United States
| | - Feng Zhao
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, Washington 98686, United States
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
5
|
Ahnood A, Chambers A, Gelmi A, Yong KT, Kavehei O. Semiconducting electrodes for neural interfacing: a review. Chem Soc Rev 2023; 52:1491-1518. [PMID: 36734845 DOI: 10.1039/d2cs00830k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 50 years, the advent of electronic technology to directly interface with neural tissue has transformed the fields of medicine and biology. Devices that restore or even replace impaired bodily functions, such as deep brain stimulators and cochlear implants, have ushered in a new treatment era for previously intractable conditions. Meanwhile, electrodes for recording and stimulating neural activity have allowed researchers to unravel the vast complexities of the human nervous system. Recent advances in semiconducting materials have allowed effective interfaces between electrodes and neuronal tissue through novel devices and structures. Often these are unattainable using conventional metallic electrodes. These have translated into advances in research and treatment. The development of semiconducting materials opens new avenues in neural interfacing. This review considers this emerging class of electrodes and how it can facilitate electrical, optical, and chemical sensing and modulation with high spatial and temporal precision. Semiconducting electrodes have advanced electrically based neural interfacing technologies owing to their unique electrochemical and photo-electrochemical attributes. Key operation modalities, namely sensing and stimulation in electrical, biochemical, and optical domains, are discussed, highlighting their contrast to metallic electrodes from the application and characterization perspective.
Collapse
Affiliation(s)
- Arman Ahnood
- School of Engineering, RMIT University, VIC 3000, Australia
| | - Andre Chambers
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Amy Gelmi
- School of Science, RMIT University, VIC 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| | - Omid Kavehei
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Jang S, Shim H, Yu C. Fully rubbery Schottky diode and integrated devices. SCIENCE ADVANCES 2022; 8:eade4284. [PMID: 36417509 PMCID: PMC9683705 DOI: 10.1126/sciadv.ade4284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A fully rubbery stretchable diode, particularly entirely based on stretchy materials, is a crucial device for stretchable integrated electronics in a wide range of applications, ranging from energy to biomedical, to integrated circuits, and to robotics. However, its development has been very nascent. Here, we report a fully rubbery Schottky diode constructed all based on stretchable electronic materials, including a liquid metal cathode, a rubbery semiconductor, and a stretchable anode. The rubbery Schottky diode exhibited a forward current density of 6.99 × 10-3 A/cm2 at 5 V and a rectification ratio of 8.37 × 104 at ±5 V. Stretchy rectifiers and logic gates based on the rubbery Schottky diodes were developed and could retain their electrical performance even under 30% tensile stretching. With the rubbery diodes, fully rubbery integrated electronics, including an active matrix multiplexed tactile sensor and a triboelectric nanogenerator-based power management system, are further demonstrated.
Collapse
Affiliation(s)
- Seonmin Jang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Hyunseok Shim
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
- Department of Mechanical Engineering, Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Saddow SE. Silicon Carbide Technology for Advanced Human Healthcare Applications. MICROMACHINES 2022; 13:346. [PMID: 35334637 PMCID: PMC8949526 DOI: 10.3390/mi13030346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Silicon carbide (SiC) is a highly robust semiconductor material that has the potential to revolutionize implantable medical devices for human healthcare, such as biosensors and neuro-implants, to enable advanced biomedical therapeutic applications for humans. SiC is both bio and hemocompatible, and is already commercially used for long-term human in vivo applications ranging from heart stent coatings and dental implants to short-term diagnostic applications involving neural implants and sensors. One challenge facing the medical community today is the lack of biocompatible materials which are inherently smart or, in other words, capable of electronic functionality. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it does not directly interact with biological tissue or has a short lifetime due to instabilities in vivo. Long-term, permanently implanted devices such as glucose sensors, neural interfaces, smart bone and organ implants, etc., require a more robust material that does not degrade over time and is not recognized and rejected as a foreign object by the inflammatory response. SiC has displayed these exceptional material properties, which opens up a whole new host of applications and allows for the development of many advanced biomedical devices never before possible for long-term use in vivo. This paper is a review of the state-of-the art and discusses cutting-edge device applications where SiC medical devices are poised to translate to the commercial marketplace.
Collapse
Affiliation(s)
- Stephen E. Saddow
- Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA; ; Tel.: +1-813-974-4773
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
8
|
Faisal SN, Amjadipour M, Izzo K, Singer JA, Bendavid A, Lin CT, Iacopi F. Non-invasive on-skin sensors for brain machine interfaces with epitaxial graphene. J Neural Eng 2021; 18. [PMID: 34874291 DOI: 10.1088/1741-2552/ac4085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022]
Abstract
Objective. Brain-machine interfaces are key components for the development of hands-free, brain-controlled devices. Electroencephalogram (EEG) electrodes are particularly attractive for harvesting the neural signals in a non-invasive fashion.Approach.Here, we explore the use of epitaxial graphene (EG) grown on silicon carbide on silicon for detecting the EEG signals with high sensitivity.Main results and significance.This dry and non-invasive approach exhibits a markedly improved skin contact impedance when benchmarked to commercial dry electrodes, as well as superior robustness, allowing prolonged and repeated use also in a highly saline environment. In addition, we report the newly observed phenomenon of surface conditioning of the EG electrodes. The prolonged contact of the EG with the skin electrolytes functionalize the grain boundaries of the graphene, leading to the formation of a thin surface film of water through physisorption and consequently reducing its contact impedance more than three-fold. This effect is primed in highly saline environments, and could be also further tailored as pre-conditioning to enhance the performance and reliability of the EG sensors.
Collapse
Affiliation(s)
- Shaikh Nayeem Faisal
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mojtaba Amjadipour
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kimi Izzo
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - James Aaron Singer
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Avi Bendavid
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia
| | - Chin-Teng Lin
- Australian Artificial Intelligence Institute, FEIT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Feng C, Frewin CL, Tanjil MRE, Everly R, Bieber J, Kumar A, Wang MC, Saddow SE. A Flexible a-SiC-Based Neural Interface Utilizing Pyrolyzed-Photoresist Film (C) Active Sites. MICROMACHINES 2021; 12:821. [PMID: 34357231 PMCID: PMC8304835 DOI: 10.3390/mi12070821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/06/2023]
Abstract
Carbon containing materials, such as graphene, carbon-nanotubes (CNT), and graphene oxide, have gained prominence as possible electrodes in implantable neural interfaces due to their excellent conductive properties. While carbon is a promising electrochemical interface, many fabrication processes are difficult to perform, leading to issues with large scale device production and overall repeatability. Here we demonstrate that carbon electrodes and traces constructed from pyrolyzed-photoresist-film (PPF) when combined with amorphous silicon carbide (a-SiC) insulation could be fabricated with repeatable processes which use tools easily available in most semiconductor facilities. Directly forming PPF on a-SiC simplified the fabrication process which eliminates noble metal evaporation/sputtering and lift-off processes on small features. PPF electrodes in oxygenated phosphate buffered solution at pH 7.4 demonstrated excellent electrochemical charge storage capacity (CSC) of 14.16 C/cm2, an impedance of 24.8 ± 0.4 kΩ, and phase angle of -35.9 ± 0.6° at 1 kHz with a 1.9 kµm2 recording site area.
Collapse
Affiliation(s)
- Chenyin Feng
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA; (M.R.-E.T.); (A.K.); (M.C.W.)
| | | | - Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA; (M.R.-E.T.); (A.K.); (M.C.W.)
| | - Richard Everly
- Nanotechnology Research & Education Center, University of South Florida, Tampa, FL 33620, USA; (R.E.); (J.B.)
| | - Jay Bieber
- Nanotechnology Research & Education Center, University of South Florida, Tampa, FL 33620, USA; (R.E.); (J.B.)
| | - Ashok Kumar
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA; (M.R.-E.T.); (A.K.); (M.C.W.)
| | - Michael Cai Wang
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA; (M.R.-E.T.); (A.K.); (M.C.W.)
| | - Stephen E. Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
10
|
Abstract
The lifetime of neural implants is strongly dependent on packaging due to the aqueous and biochemically aggressive nature of the body. Over the last decade, there has been a drive towards neuromodulatory implants which are wireless and approaching millimeter-scales with increasing electrode count. A so-far unrealized goal for these new types of devices is an in-vivo lifetime comparable to a sizable fraction of a healthy patient's lifetime (>10-20 years). Existing, approved medical implants commonly encapsulate components in metal enclosures (e.g. titanium) with brazed ceramic inserts for electrode feedthrough. It is unclear how amenable the traditional approach is to the simultaneous goals of miniaturization, increased channel count, and wireless communication. Ceramic materials have also played a significant role in traditional medical implants due to their dielectric properties, corrosion resistance, biocompatibility, and high strength, but are not as commonly used for housing materials due to their brittleness and the difficulty they present in creating complex housing geometries. However, thin-film technology has opened new opportunities for ceramics processing. Thin films derived largely from the semiconductor industry can be deposited and patterned in new ways, have conductivities which can be altered during manufacturing to provide conductors as well as insulators, and can be used to fabricate flexible substrates. In this review, we give an overview of packaging for neural implants, with an emphasis on how ceramic materials have been utilized in medical device packaging, as well as how ceramic thin-film micromachining and processing may be further developed to create truly reliable, miniaturized, neural implants.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, United States of America
| | | |
Collapse
|
11
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
12
|
Phan HP, Zhong Y, Nguyen TK, Park Y, Dinh T, Song E, Vadivelu RK, Masud MK, Li J, Shiddiky MJA, Dao D, Yamauchi Y, Rogers JA, Nguyen NT. Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS NANO 2019; 13:11572-11581. [PMID: 31433939 DOI: 10.1021/acsnano.9b05168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Implantable electronics are of great interest owing to their capability for real-time and continuous recording of cellular-electrical activity. Nevertheless, as such systems involve direct interfaces with surrounding biofluidic environments, maintaining their long-term sustainable operation, without leakage currents or corrosion, is a daunting challenge. Herein, we present a thin, flexible semiconducting material system that offers attractive attributes in this context. The material consists of crystalline cubic silicon carbide nanomembranes grown on silicon wafers, released and then physically transferred to a final device substrate (e.g., polyimide). The experimental results demonstrate that SiC nanomembranes with thicknesses of 230 nm do not experience the hydrolysis process (i.e., the etching rate is 0 nm/day at 96 °C in phosphate-buffered saline (PBS)). There is no observable water permeability for at least 60 days in PBS at 96 °C and non-Na+ ion diffusion detected at a thickness of 50 nm after being soaked in 1× PBS for 12 days. These properties enable Faradaic interfaces between active electronics and biological tissues, as well as multimodal sensing of temperature, strain, and other properties without the need for additional encapsulating layers. These findings create important opportunities for use of flexible, wide band gap materials as essential components of long-lived neurological and cardiac electrophysiological device interfaces.
Collapse
Affiliation(s)
- Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - Yishan Zhong
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Yoonseok Park
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - Toan Dinh
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Enming Song
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Raja Kumar Vadivelu
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering & Nanotechnology and School of Chemical Engineering , University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Jinghua Li
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Plant & Environmental New Resources , Kyung Hee University , 1732 Deogyeong-daero , Giheung-gu, Yongin-si , Gyeonggi-do 446-701 , Korea
| | - Muhammad J A Shiddiky
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
- School of Environment and Science , Griffith University , Brisbane , Queensland 4111 , Australia
| | - Dzung Dao
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
- School of Engineering and Built Environment , Griffith University , Gold Coast , Queensland 4215 , Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering & Nanotechnology and School of Chemical Engineering , University of Queensland , Brisbane , Queensland 4072 , Australia
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - John A Rogers
- Center for Bio-Integrated Electronics, Department of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and, Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine , Northwestern University , Evanston , Illinois 60208 , United States
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre , Griffith University , Brisbane , Queensland 4111 , Australia
| |
Collapse
|
13
|
Ahn SH, Jeong J, Kim SJ. Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices. MICROMACHINES 2019; 10:E508. [PMID: 31370259 PMCID: PMC6723304 DOI: 10.3390/mi10080508] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 01/11/2023]
Abstract
The development of reliable long-term encapsulation technologies for implantable biomedical devices is of paramount importance for the safe and stable operation of implants in the body over a period of several decades. Conventional technologies based on titanium or ceramic packaging, however, are not suitable for encapsulating microfabricated devices due to their limited scalability, incompatibility with microfabrication processes, and difficulties with miniaturization. A variety of emerging materials have been proposed for encapsulation of microfabricated implants, including thin-film inorganic coatings of Al2O3, HfO2, SiO2, SiC, and diamond, as well as organic polymers of polyimide, parylene, liquid crystal polymer, silicone elastomer, SU-8, and cyclic olefin copolymer. While none of these materials have yet been proven to be as hermetic as conventional metal packages nor widely used in regulatory approved devices for chronic implantation, a number of studies have demonstrated promising outcomes on their long-term encapsulation performance through a multitude of fabrication and testing methodologies. The present review article aims to provide a comprehensive, up-to-date overview of the long-term encapsulation performance of these emerging materials with a specific focus on publications that have quantitatively estimated the lifetime of encapsulation technologies in aqueous environments.
Collapse
Affiliation(s)
- Seung-Hee Ahn
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute of Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
14
|
Pancrazio JJ, Cogan SF. Editorial for the Special Issue on Neural Electrodes: Design and Applications. MICROMACHINES 2019; 10:E466. [PMID: 31336980 PMCID: PMC6680485 DOI: 10.3390/mi10070466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Neural electrodes enable the recording and stimulation of bioelectrical activity from the nervous system [...].
Collapse
Affiliation(s)
- Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, BSB 13.633, Richardson, TX 75080, USA.
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, BSB 13.633, Richardson, TX 75080, USA.
| |
Collapse
|
15
|
Beygi M, Bentley JT, Frewin CL, Kuliasha CA, Takshi A, Bernardin EK, La Via F, Saddow SE. Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide. MICROMACHINES 2019; 10:E430. [PMID: 31261887 PMCID: PMC6680876 DOI: 10.3390/mi10070430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
One of the main issues with micron-sized intracortical neural interfaces (INIs) is their long-term reliability, with one major factor stemming from the material failure caused by the heterogeneous integration of multiple materials used to realize the implant. Single crystalline cubic silicon carbide (3C-SiC) is a semiconductor material that has been long recognized for its mechanical robustness and chemical inertness. It has the benefit of demonstrated biocompatibility, which makes it a promising candidate for chronically-stable, implantable INIs. Here, we report on the fabrication and initial electrochemical characterization of a nearly monolithic, Michigan-style 3C-SiC microelectrode array (MEA) probe. The probe consists of a single 5 mm-long shank with 16 electrode sites. An ~8 µm-thick p-type 3C-SiC epilayer was grown on a silicon-on-insulator (SOI) wafer, which was followed by a ~2 µm-thick epilayer of heavily n-type (n+) 3C-SiC in order to form conductive traces and the electrode sites. Diodes formed between the p and n+ layers provided substrate isolation between the channels. A thin layer of amorphous silicon carbide (a-SiC) was deposited via plasma-enhanced chemical vapor deposition (PECVD) to insulate the surface of the probe from the external environment. Forming the probes on a SOI wafer supported the ease of probe removal from the handle wafer by simple immersion in HF, thus aiding in the manufacturability of the probes. Free-standing probes and planar single-ended test microelectrodes were fabricated from the same 3C-SiC epiwafers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed on test microelectrodes with an area of 491 µm2 in phosphate buffered saline (PBS) solution. The measurements showed an impedance magnitude of 165 kΩ ± 14.7 kΩ (mean ± standard deviation) at 1 kHz, anodic charge storage capacity (CSC) of 15.4 ± 1.46 mC/cm2, and a cathodic CSC of 15.2 ± 1.03 mC/cm2. Current-voltage tests were conducted to characterize the p-n diode, n-p-n junction isolation, and leakage currents. The turn-on voltage was determined to be on the order of ~1.4 V and the leakage current was less than 8 μArms. This all-SiC neural probe realizes nearly monolithic integration of device components to provide a likely neurocompatible INI that should mitigate long-term reliability issues associated with chronic implantation.
Collapse
Affiliation(s)
- Mohammad Beygi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - John T Bentley
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | | | - Cary A Kuliasha
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Arash Takshi
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Evans K Bernardin
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Francesco La Via
- CNR Institute for Microelectronics and Microsystems, Catania, Sicily 95121, Italy
| | - Stephen E Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
16
|
Deku F, Frewin CL, Stiller A, Cohen Y, Aqeel S, Joshi-Imre A, Black B, Gardner TJ, Pancrazio JJ, Cogan SF. Amorphous Silicon Carbide Platform for Next Generation Penetrating Neural Interface Designs. MICROMACHINES 2018; 9:E480. [PMID: 30424413 PMCID: PMC6215182 DOI: 10.3390/mi9100480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
Abstract
Microelectrode arrays that consistently and reliably record and stimulate neural activity under conditions of chronic implantation have so far eluded the neural interface community due to failures attributed to both biotic and abiotic mechanisms. Arrays with transverse dimensions of 10 µm or below are thought to minimize the inflammatory response; however, the reduction of implant thickness also decreases buckling thresholds for materials with low Young's modulus. While these issues have been overcome using stiffer, thicker materials as transport shuttles during implantation, the acute damage from the use of shuttles may generate many other biotic complications. Amorphous silicon carbide (a-SiC) provides excellent electrical insulation and a large Young's modulus, allowing the fabrication of ultrasmall arrays with increased resistance to buckling. Prototype a-SiC intracortical implants were fabricated containing 8 - 16 single shanks which had critical thicknesses of either 4 µm or 6 µm. The 6 µm thick a-SiC shanks could penetrate rat cortex without an insertion aid. Single unit recordings from SIROF-coated arrays implanted without any structural support are presented. This work demonstrates that a-SiC can provide an excellent mechanical platform for devices that penetrate cortical tissue while maintaining a critical thickness less than 10 µm.
Collapse
Affiliation(s)
- Felix Deku
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Christopher L Frewin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Allison Stiller
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Yarden Cohen
- Department of Biology and Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Saher Aqeel
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Alexandra Joshi-Imre
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Bryan Black
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Timothy J Gardner
- Department of Biology and Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
17
|
Bernardin EK, Frewin CL, Everly R, Ul Hassan J, Saddow SE. Correction: Bernardin E.K.; et al. Demonstration of a Robust All-Silicon-Carbide Intracortical Neural Interface. Micromachines, 2018, 9, 412. MICROMACHINES 2018; 9:E451. [PMID: 30424384 PMCID: PMC6187240 DOI: 10.3390/mi9090451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
The authors would like to indicate the following financial support they received to the Acknowledgement Section of their published paper [...].
Collapse
Affiliation(s)
- Evans K Bernardin
- Department of Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Christopher L Frewin
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX 75080, USA.
| | - Richard Everly
- Nanotechnology Research and Education Center @ USF, Tampa, FL 33617, USA.
| | - Jawad Ul Hassan
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
| | - Stephen E Saddow
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|