1
|
Ku H, Kelk D, Bauer DC, Sidhu JPS. Phage-plasmid hybrids as vectors for antibiotic resistance in environmental Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178157. [PMID: 39729844 DOI: 10.1016/j.scitotenv.2024.178157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
This study investigated the potential role of phages in the dissemination of antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) in Escherichia coli (E. coli). A comprehensive in silico analysis of 18,410 phage sequences retrieved from the National Center for Biotechnology Information database (NCBI) revealed distinct carriage patterns for ARGs and VFGs between lytic, temperate, and chronic phage types. Notably, 57 temperate phages carried ARGs, particularly associated with multidrug and aminoglycoside resistance. Temperate phages (8.97 %, 635/7081) and chronic phages (8.09 %, 14/173) exhibited a significantly higher prevalence of VFGs (Chi-Square, p ≤ 0.05), particularly associated with exotoxin-related genes, compared to lytic phages (0.05 %, 6/11,156). This underscores the role phages play as reservoirs and potential vectors for the dissemination of ARGs and VFGs in bacteria. Our environmental E. coli isolates (n = 60) were found to carry 179 intact prophages containing polymyxin, macrolide, tetracycline, and multidrug resistance genes as well as various VFGs. This study documents the presence of phage-plasmids (P-Ps) in environmental E. coli isolates, offering new insights into horizontal gene transfer (HGT) mechanisms. Notably, the blaCTX-M-15 gene, associated with beta-lactam resistance, was identified in two P-Ps, suggesting a potentially novel route for the dissemination of beta-lactam resistance. The diverse replicon types observed in P-Ps suggest a broader integration capacity compared to traditional plasmids, potentially enabling the blaCTX-M-15 gene dissemination across diverse bacterial species. This study provides valuable insights into the multifaceted role of phages in shaping the antimicrobial resistance landscape. Further research is necessary to fully understand the intricate mechanisms underlying phage-mediated ARG and VFG dissemination.
Collapse
Affiliation(s)
- H Ku
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - D Kelk
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - D C Bauer
- CSIRO Health & Biosecurity, Waite Campus, Waite Road, Urrbrae, SA 5064, Australia
| | - J P S Sidhu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| |
Collapse
|
2
|
Kürekci C, Yüksel M, Celil Ozaslan BG, Tan S, Jäckel C, Grobbel M, Hammerl JA. Diversity and Resistance Profiles of ESBL-Producing Gram-Negative Bacteria from Dairy Farms in Southern Türkiye. Antibiotics (Basel) 2024; 13:1134. [PMID: 39766524 PMCID: PMC11672566 DOI: 10.3390/antibiotics13121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The increasing occurrence of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales, most commonly Escherichia coli, has become a serious problem. The aim of this study was to determine the presence of ESBL-producing Gram-negative bacteria in dairy cattle, goat and sheep farms located in southern Türkiye. Methods: Samples (409 quarter milk samples and 110 fresh faecal samples from cattle, 75 bulk tank milk samples and 225 rectal swab samples from goats and sheep) were subjected to selective isolation on MacConkey agar with ceftazidime (2 µg/mL). Isolates were identified by MALDI-ToF MS. The antimicrobial susceptibility profile of the isolates was determined by the broth microdilution method. To obtain a deeper insight into the genetic diversity of isolates substantially contributing to an efficient spread of their ESBL-determinants (23-MO00001: an E. coli from mastitis and 23-MO00002 Citrobacter freundii), the transmission potential and the genetic background of the plasmid carrying the blaCTX-M determinant was studied with whole genome analysis using Illumina sequencing. Results: Of the samples tested, 47 from the bovine faecal samples, 1 from the subclinical mastitis milk sample, 9 from the goat/sheep rectal swab samples and 5 from the goat/sheep bulk tank milk samples had ceftazidime-resistant Gram-negative strains with the ESBL phenotype. Of the 33 ESBL-producing E. coli isolates, 66.6% were resistant to tetracycline, 57.6% to sulfamethoxazole, 48.9% to nalidixic acid, 42.4% to ciprofloxacin and 33.3% to trimethoprim. Pulsed field gel electrophoresis (PFGE) results showed that the majority of E. coli isolates (16/33) and all Enterobacter spp. isolates (n = 5) were not clonally related (80% similarity cut value). The sequenced strains were observed to efficiently transfer their ceftazidime resistance to the recipient strain E. coli J53 at 37 °C (transfer rates: 101-102 transconjugants per donor cell). S1-PFGE showed that the transconjugants J53(p23MO01-T1) and J53(p23MO02-T1) had acquired plasmids of about 82 kb and 55 kb plasmids, respectively. According to WGS results, the E. coli isolate was assigned to ST162, while the C. freundii isolate was assigned to ST95. Conclusions: This study demonstrates that dairy animals are reservoirs of ESBL-producing bacteria.
Collapse
Affiliation(s)
- Cemil Kürekci
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya 31060, Türkiye
| | - Murat Yüksel
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya 31060, Türkiye;
| | - Büşra Gülay Celil Ozaslan
- Department of Microbiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya 31060, Türkiye;
| | - Sait Tan
- Yavuzeli District Directorate of Agriculture and Forestry, Ministry of Agriculture and Forestry, Gaziantep 27060, Türkiye;
| | - Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, D-10589 Berlin, Germany; (C.J.); (M.G.); (J.A.H.)
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, D-10589 Berlin, Germany; (C.J.); (M.G.); (J.A.H.)
| | - Jens Andre Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, D-10589 Berlin, Germany; (C.J.); (M.G.); (J.A.H.)
| |
Collapse
|
3
|
Tóth K, Damjanova I, Laczkó L, Buzgó L, Lesinszki V, Ungvári E, Jánvári L, Hanczvikkel A, Tóth Á, Szabó D. Genomic Epidemiology of C2/H30Rx and C1-M27 Subclades of Escherichia coli ST131 Isolates from Clinical Blood Samples in Hungary. Antibiotics (Basel) 2024; 13:363. [PMID: 38667039 PMCID: PMC11047377 DOI: 10.3390/antibiotics13040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
Extended-spectrum β-lactamase-producing Escherichia coli ST131 has become widespread worldwide. This study aims to characterize the virulome, resistome, and population structure of E. coli ST131 isolates from clinical blood samples in Hungary. A total of 30 C2/H30Rx and 33 C1-M27 ST131 isolates were selected for Illumina MiSeq sequencing and 30 isolates for MinION sequencing, followed by hybrid de novo assembly. Five C2/H30Rx and one C1-M27 cluster were identified. C1-M27 isolates harbored the F1:A2:B20 plasmid in 93.9% of cases. Long-read sequencing revealed that blaCTX-M-27 was on plasmids. Among the C2/H30Rx isolates, only six isolates carried the C2-associated F2:A1:B- plasmid type. Of 19 hybrid-assembled C2/H30Rx genomes, the blaCTX-M-15 gene was located on plasmid only in one isolate, while in the other isolates, ISEcp1 or IS26-mediated chromosomal integration of blaCTX-M-15 was detected in unique variations. In one isolate a part of F2:A1:B- plasmid integrated into the chromosome. These results suggest that CTX-M-15-producing C2/H30Rx and CTX-M-27-producing C1-M27 subclades may have emerged and spread in different ways in Hungary. While blaCTX-M-27 was carried mainly on the C1/H30R-associated F1:A2:B20 plasmid, the IncF-like plasmids of C2/H30Rx or its composite transposons have been incorporated into the chromosome through convergent evolutionary processes.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Ivelina Damjanova
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Levente Laczkó
- One Health Institute, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-DE Conservation Biology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Buzgó
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Virág Lesinszki
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Erika Ungvári
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Laura Jánvári
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Adrienn Hanczvikkel
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Ákos Tóth
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SE Human Microbiota Research Group, 1052 Budapest, Hungary
- Neurosurgical and Neurointervention Clinic, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
5
|
Lubwama M, Kateete DP, Katende G, Kigozi E, Orem J, Phipps W, Bwanga F. CTX-M, TEM, and SHV Genes in Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp Isolated from Hematologic Cancer Patients with Bacteremia in Uganda. Infect Drug Resist 2024; 17:641-653. [PMID: 38384499 PMCID: PMC10878986 DOI: 10.2147/idr.s442646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose We determined the phenotypic resistance to third-generation cephalosporins, phenotypic extended spectrum beta-lactamase (ESBL) prevalence, and genotypic prevalence of ESBL-encoding genes blaCTX-M, blaTEM, and blaSHV in Enterobacteriaceae isolated from hematologic cancer patients with febrile neutropenia and bacteremia at the Uganda Cancer Institute (UCI). Patients and Methods Blood cultures from hematologic cancer patients with febrile neutropenia were processed in BACTEC 9120. E. coli, K. pneumoniae, and Enterobacter spp. isolates were identified using conventional biochemical methods. Antimicrobial susceptibility tests, phenotypic ESBL characterization, and genotypic characterization of the ESBL-encoding genes blaCTX-M, blaTEM, and blaSHV were determined for pure isolates of E. coli, K. pneumoniae, and Enterobacter spp. Results Two hundred and two patients were included in the study. Median age of patients was 19 years (IQR: 10-30 years). Majority (N=119, 59%) were male patients. Sixty (30%) of the participants had at least one febrile episode due to Enterobacteriaceae. Eighty-three organisms were isolated with E. coli being predominant (45, 54%). Seventy-nine (95%) Enterobacteriaceae were multidrug resistant. The ESBL phenotype was detected in 54/73 (74%) of Enterobacteriaceae that were resistant to third-generation cephalosporins. A higher proportion of Enterobacteriaceae with ESBL-positive phenotype were resistant to piperacillin-tazobactam (p=0.024), gentamicin (p=0.000), ciprofloxacin (p=0.000), and cotrimoxazole (p=0.000) compared to Enterobacteriaceae, which were sensitive to third-generation cephalosporins. The organisms were more susceptible to carbapenems and chloramphenicol than resistant. ESBL-encoding genes (blaCTX-M, blaTEM, and blaSHV) were detected in 55 (75%) of the 73 Enterobacteriaceae that were resistant to third-generation cephalosporins. BlaCTX-M, was the most common ESBL-encoding gene identified with 50 (91%). Conclusion ESBL-producing Enterobacteriaceae are a predominant cause of bacteremia in hematologic cancer patients at UCI. The most common ESBL-encoding gene identified in the ESBL-PE was blaCTX-M. Resistance to imipenem and meropenem was low.
Collapse
Affiliation(s)
- Margaret Lubwama
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David P Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - George Katende
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Allergy and Infectious Diseases Division, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Freddie Bwanga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Edward EA, Mohamed NM, Zakaria AS. Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt. Microorganisms 2022; 10:1097. [PMID: 35744615 PMCID: PMC9228323 DOI: 10.3390/microorganisms10061097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The accelerated dissemination of blaCTX-M genes among these MDR K. pneumoniae, particularly blaCTX-M-14 and blaCTX-M-15, have been noted. In this study, we investigated the occurrence of blaCTX-M-IV among K. pneumoniae recovered from the laboratory of a major hospital in Alexandria. The 23 tested isolates showed an MDR phenotype and the blaCTX-M-IV gene was detected in ≈22% of the isolates. The transformation of plasmids harboring blaCTX-M-IV to chemically competent cells of Escherichia coli DH5α was successful in three out of five of the tested blaCTX-M-IV-positive isolates. Whole genome sequencing of K22 indicated that the isolate belonged to the high-risk clone ST383, showing a simultaneous carriage of blaCTX-M-14 on IncL/M plasmid, i.e., pEGY22_CTX-M-14, and blaCTX-M-15 on a hybrid IncHI1B/IncFIB plasmid, pEGY22_CTX-M-15. Alignment of both plasmids revealed high similarity with those originating in the UK, Germany, Australia, Russia, China, Saudi Arabia, and Morocco. pEGY22_CTX-M-15 was a mosaic plasmid that demonstrated convergence of MDR and virulence genes. The emergence of such a plasmid with enhanced genetic plasticity constitutes the perfect path for the evolution of K. pneumoniae isolates causing invasive untreatable infections especially in a country with a high burden of infectious diseases such as Egypt. Therefore there is an imperative need for countrywide surveillances to monitor the prevalence of these superbugs with limited therapeutic options.
Collapse
Affiliation(s)
| | | | - Azza S. Zakaria
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria 25435, Egypt; (E.A.E.); (N.M.M.)
| |
Collapse
|
7
|
Bird MT, Greig DR, Nair S, Jenkins C, Godbole G, Gharbia SE. Use of Nanopore Sequencing to Characterise the Genomic Architecture of Mobile Genetic Elements Encoding bla CTX-M-15 in Escherichia coli Causing Travellers' Diarrhoea. Front Microbiol 2022; 13:862234. [PMID: 35422790 PMCID: PMC9002331 DOI: 10.3389/fmicb.2022.862234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Increasing levels of antimicrobial resistance (AMR) have been documented in Escherichia coli causing travellers’ diarrhoea, particularly to the third-generation cephalosporins. Diarrhoeagenic E. coli (DEC) can act as a reservoir for the exchange of AMR genes between bacteria residing in the human gut, enabling them to survive and flourish through the selective pressures of antibiotic treatments. Using Oxford Nanopore Technology (ONT), we sequenced eight isolates of DEC from four patients’ specimens who had all recently returned to the United Kingdome from Pakistan. Sequencing yielded two DEC harbouring blaCTX-M-15 per patient, all with different sequence types (ST) and belonging to five different pathotypes. The study aimed to determine whether blaCTX-M-15 was located on the chromosome or plasmid and to characterise the drug-resistant regions to better understand the mechanisms of onward transmission of AMR determinants. Patients A and C both had one isolate where blaCTX-M-15 was located on the plasmid (899037 & 623213, respectively) and one chromosomally encoded (899091 & 623214, respectively). In patient B, blaCTX-M-15 was plasmid-encoded in both DEC isolates (786605 & 7883090), whereas in patient D, blaCTX-M-15 was located on the chromosome in both DEC isolates (542093 & 542099). The two blaCTX-M-15-encoding plasmids associated with patient B were different although the blaCTX-M-15-encoding plasmid isolated from 788309 (IncFIB) exhibited high nucleotide similarity to the blaCTX-M-15-encoding plasmid isolated from 899037 (patient A). In the four isolates where blaCTX-M-15 was chromosomally encoded, two isolates (899091 & 542099) shared the same insertion site. The blaCTX-M-15 insertion site in isolate 623214 was described previously, whereas that of isolate 542093 was unique to this study. Analysis of Nanopore sequencing data enables us to characterise the genomic architecture of mobile genetic elements encoding AMR determinants. These data may contribute to a better understanding of persistence and onward transmission of AMR determinants in multidrug-resistant (MDR) E. coli causing gastrointestinal and extra-intestinal infections.
Collapse
Affiliation(s)
- Matthew T Bird
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| | - David R Greig
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Satheesh Nair
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Saheer E Gharbia
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| |
Collapse
|
8
|
Polyclonal emergence of MDR Enterobacter cloacae complex isolates producing multiple extended spectrum beta-lactamases at Maputo Central Hospital, Mozambique. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-021-01039-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractEnterobacter spp. are important nosocomial pathogens responsible of a wide variety of infections, mainly due to Extended Spectrum β-Lactamase (ESBL) producing isolates, constituting a global public health issue in terms of clinical treatment and infection control, especially in low-income countries, where last-line treatment is often unavailable and there is weak nosocomial surveillance. In this study, we conducted a phenotypic and molecular characterization of 8 clinical Enterobacter spp. strains, isolated from patient’s blood in three hospitals in Mozambique. Isolates were identified by MALDI-TOF and antimicrobial Susceptibility Testing was performed by VITEK 2 system. Half of isolates were analyzed by PCR for β-lactamases genes, other isolates by Whole Genome Sequencing. We identified all isolates as Enterobacter cloacae complex (ECC), those from Maputo Central Hospital were polyclonal, multidrug resistant (5/8), and ESBL producers (50%), carrying blaCTX-M-15 and different assortment of blaSHV-12, blaTEM-1B and blaOXA-1, and AmpCs blaCMH-3, blaACT-7 and blaACT-9 genes. Resistance determinants linked to fluoroquinolone (aac(6')Ib-cr and qnrB1) and others antimicrobials were also found. Notably, one isolate showed phenotypically resistance to colistin, while another colistin susceptible isolate carried a silent mcr-9 gene. ECC nosocomial surveillance is urgently needed to contain and prevent the dissemination of ESBLs producing clones, and mcr-9 spread to other Enterobacteriaceae.
Collapse
|
9
|
Plasmid Replicon Diversity of Clinical Uropathogenic Escherichia coli Isolates from Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify and compare the plasmid replicons of clinical uropathogenic Escherichia coli (UPEC) isolates, involving extended spectrum β-lactamase (ESBL)-positive and ESBL-negative, E. coli ST131 and non-ST131 and various ST131 subclones. Plasmid replicon typing on 24 clinical UPEC isolates was carried out using polymerase chain reaction-based replicon typing. A statistical analysis was performed to assess the associations between plasmid replicon types and ESBL carriage, and to evaluate the link between ST131 isolates and high replicon carriage. Eight replicons, I1α, N2, Iγ, X1, FIIS, K, FIA, and FII were detected. The FII was the most common replicon identified here. ESBL-positive E. coli isolates were highly associated with I1α, N2, Iγ, X1, and FIIS replicons, while FIA was present only in ESBL-negative group. ST131 isolates were highly associated with I1α and N2 replicons compared to non-ST131. No link was found between replicon carriage and the number or type of ESBLs in E. coli isolates. The diversity observed in replicon patterns of our clinical E. coli isolates indicates that they might be originated from different sources. The presence of replicons reported previously in animal sources suggests a possible transfer of antimicrobial resistance between animal and human bacterial isolates.
Collapse
|
10
|
Early Response of Antimicrobial Resistance and Virulence Genes Expression in Classical, Hypervirulent, and Hybrid hvKp-MDR Klebsiella pneumoniae on Antimicrobial Stress. Antibiotics (Basel) 2021; 11:antibiotics11010007. [PMID: 35052884 PMCID: PMC8773033 DOI: 10.3390/antibiotics11010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is an increasingly important hospital pathogen. Classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp) are two distinct evolutionary genetic lines. The recently ongoing evolution of K. pneumoniae resulted in the generation of hybrid hvKP-MDR strains. K. pneumoniae distinct isolates (n = 70) belonged to 20 sequence types with the prevalence of ST395 (27.1%), ST23 (18.6%), ST147 (15.7%), and ST86 (7.1%), and 17 capsular types with the predominance of K2 (31.4%), K57 (18.6%), K64 (10.0%), K1 (5.7%) were isolated from patients of the Moscow neurosurgery ICU in 2014-2019. The rate of multi-drug resistant (MDR) and carbapenem-resistant phenotypes were 84.3% and 45.7%, respectively. Whole-genome sequencing of five selected strains belonging to cKp (ST395K47 and ST147K64), hvKp (ST86K2), and hvKp-MDR (ST23K1 and ST23K57) revealed blaSHV, blaTEM, blaCTX, blaOXA-48, and blaNDM beta-lactamase genes; acr, oqx, kpn, kde, and kex efflux genes; and K. pneumoniae virulence genes. Selective pressure of 100 mg/L ampicillin or 10 mg/L ceftriaxone induced changes of expression levels for named genes in the strains belonging to cKp, hvKp, and hybrid hvKp-MDR. Obtained results seem to be important for epidemiologists and clinicians for enhancing knowledge about hospital pathogens.
Collapse
|
11
|
Furlan JPR, Stehling EG. Multiple sequence types, virulence determinants and antimicrobial resistance genes in multidrug- and colistin-resistant Escherichia coli from agricultural and non-agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117804. [PMID: 34329068 DOI: 10.1016/j.envpol.2021.117804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In soils, the presence of clinically relevant bacteria carrying ARGs, including extended-spectrum β-lactamase- and plasmid-mediated AmpC β-lactamase-encoding genes, is an underestimated public health problem that requires more attention. For this investigation, 300 samples from agricultural and non-agricultural soils were used to obtain 41 MDR E. coli isolates, standing out the resistance to β-lactams, fluoroquinolones and colistin. Virulence genes related to diarrheagenic E. coli and extraintestinal pathogenic E. coli were detected. Several ARGs were found, highlighting the presence of at least one β-lactamase-encoding gene (blaTEM, blaCMY, blaSHV, blaOXA-1-like, blaCTX-M-2, and/or blaCTX-M-15) in each isolate. Among the fluoroquinolone-resistant E. coli isolates, the plasmid-mediated quinolone resistance genes (qnrB and oqxA) and substitutions in the quinolone resistance-determining regions were detected. Some isolates were resistant to colistin (MICs of 4-8 mg/L) and, although no mcr-like gene was detected, substitutions in the two-component systems involving PhoP/PhoQ and PmrA/PmrB were found. Furthermore, the E. coli isolates presented plasmids and class 1 integrons, the last one detected in all isolates. The ARGs blaTEM, aadA and dfrA and the lpfA virulence-associated gene presented statistically significant differences (P < 0.05) in agricultural soils, while the blaOXA-1-like gene presented a statistically significant difference in non-agricultural soils. Thirty-eight sequence types (STs) were identified among the isolates, spotlighting the 20 different STs that carried blaCMY and blaCTX-M-type genes and those commonly reported in infections worldwide. The occurrence of virulent, multidrug- and colistin-resistant E. coli isolates in soils could lead to contamination of surrounding environments and food, increasing the risk of human and animal exposure. Therefore, this study contributes to a better understanding of E. coli in soils and reinforces the importance of the One Health approach to antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|