1
|
Wang J, Mu H, Liu S, Qi S, Mou S. Effects of Trichoderma harzianum on Growth and Rhizosphere Microbial Community of Continuous Cropping Lagenaria siceraria. Microorganisms 2024; 12:1987. [PMID: 39458295 PMCID: PMC11509707 DOI: 10.3390/microorganisms12101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
This study analyzed the effects of Trichoderma harzianum on the growth of continuous cropping Lagenaria siceraria and the physical and chemical properties of rhizosphere soil and microbial community structure, using Illumina Miseq (PE300) high-throughput sequencing technology along with physiological and biochemical detection. The results indicated that after applying T. harzianum, the growth of L. siceraria was significantly promoted, with increases in plant height, fresh weight, and dry weight of 21.42%, 24.5%, and 4.5%, respectively. The pH of the rhizosphere soil decreased from 7.78 to 7.51, while the electrical conductivity, the available phosphorus, the available potassium, and the total nitrogen were markedly higher compared to the control group and increased by 13.95%, 22.54%, 21.37%, and 16.41%, respectively. The activities of catalase and sucrase in the rhizosphere increased by 18.33% and 61.47%, and the content of soil organic carbon (SOC) increased by 27.39%, which indicated that T. harzianum could enhance soil enzyme activity and promotes the transformation of organic matter. The relative abundance of beneficial bacteria such as Pseudomonas increased, while the relative abundance of harmful fungi such as Fusarium and Podosphaera decreased significantly.
Collapse
Affiliation(s)
| | - Hongmei Mu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (J.W.); (S.L.); (S.Q.); (S.M.)
| | | | | | | |
Collapse
|
2
|
Staropoli A, Di Mola I, Ottaiano L, Cozzolino E, Pironti A, Lombardi N, Nanni B, Mori M, Vinale F, Woo SL, Marra R. Biodegradable Mulch Films and Bioformulations Based on Trichoderma sp. and Seaweed Extract Differentially Affect the Metabolome of Industrial Tomato Plants. J Fungi (Basel) 2024; 10:97. [PMID: 38392769 PMCID: PMC10890107 DOI: 10.3390/jof10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The use of biostimulants and biofilms in agriculture is constantly increasing, as they may support plant growth and productivity by improving nutrient absorption, increasing stress resilience and providing sustainable alternatives to chemical management practices. In this work, two commercial products based on Trichoderma afroharzianum strain T22 (Trianum P®) and a seaweed extract from Ascophyllum nodosum (Phylgreen®) were tested on industrial tomato plants (Solanum lycopersicum var. Heinz 5108F1) in a field experiment. The effects of single and combined applications of microbial and plant biostimulants on plants grown on two different biodegradable mulch films were evaluated in terms of changes in the metabolic profiles of leaves and berries. Untargeted metabolomics analysis by LC-MS Q-TOF revealed the presence of several significantly accumulated compounds, depending on the biostimulant treatment, the mulch biofilm and the tissue examined. Among the differential compounds identified, some metabolites, belonging to alkaloids, flavonoids and their derivatives, were more abundant in tomato berries and leaves upon application of Trichoderma-based product. Interestingly, the biostimulants, when applied alone, similarly affected the plant metabolome compared to control or combined treatments, while significant differences were observed according to the mulch biofilm applied.
Collapse
Affiliation(s)
- Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Piazzale Enrico Fermi, 1, 80055 Naples, Italy
| | - Ida Di Mola
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Lucia Ottaiano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Eugenio Cozzolino
- Council for Agricultural Research and Economics, Research Center for Cereal and Industrial Crops, Viale Douhet, 8, 81100 Caserta, Italy
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Bruno Nanni
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Mauro Mori
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Piazzale Enrico Fermi, 1, 80055 Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino, 1, 80137 Naples, Italy
| | - Sheridan Lois Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Piazza Carlo di Borbone, 1, 80055 Naples, Italy
| |
Collapse
|
3
|
Liang J, Yan Z, Zhang Y, Xu H, Song W. Proteomics analysis of resistance mechanism of Trichoderma harzianum under U(VI) stress. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107303. [PMID: 37783189 DOI: 10.1016/j.jenvrad.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Trichoderma harzianum has a certain resistance to Hexavalent Uranium (U(VI)), but its resistance mechanism is unknown. Based on proteomics sequencing using DIA mode, differentially expressed proteins (DEPs) of Trichoderma harzianum under U(VI) stress were identified. GO enrichment, KEGG annotation analysis and DEPs annotation were performed. The results showed that 8 DEPs, 8 DEPs and 15 DEPs were obtained in the low-dose, medium-dose and high-dose groups, respectively. The functional classification of GO demonstrated that DEPs were associated with 17 molecular functions, 5 biological processes, and 5 cellular components. Furthermore, DEPs were enriched in transport and catabolism, energy metabolism, translation, and signal transduction. These findings showed that Trichoderma harzianum was significantly changed in protein expression and signaling pathway after U(VI) exposure. Therefore, these results have provided Trichoderma harzianum with a theoretical background that can be applied to environmental cleanup.
Collapse
Affiliation(s)
- Jun Liang
- Jianghuai College of Anhui University, Hefei, 230031, China.
| | - Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Huan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
4
|
Xiao Z, Zhao Q, Li W, Gao L, Liu G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol 2023; 14:1146210. [PMID: 37125207 PMCID: PMC10134904 DOI: 10.3389/fmicb.2023.1146210] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
In the control of plant diseases, biocontrol has the advantages of being efficient and safe for human health and the environment. The filamentous fungus Trichoderma harzianum and its closely related species can inhibit the growth of many phytopathogenic fungi, and have been developed as commercial biocontrol agents for decades. In this review, we summarize studies on T. harzianum species complex from the perspective of strain improvement. To elevate the biocontrol ability, the production of extracellular proteins and compounds with antimicrobial or plant immunity-eliciting activities need to be enhanced. In addition, resistance to various environmental stressors should be strengthened. Engineering the gene regulatory system has the potential to modulate a variety of biological processes related to biocontrol. With the rapidly developing technologies for fungal genetic engineering, T. harzianum strains with increased biocontrol activities are expected to be constructed to promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 2023; 14:1160551. [PMID: 37206337 PMCID: PMC10189891 DOI: 10.3389/fmicb.2023.1160551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Hailin Guo
- Science and Technology Innovation Development Center of Bijie City, Bijie, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Mengyu Zhao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
- *Correspondence: Jingjun Ruan,
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Jie Chen,
| |
Collapse
|