1
|
Klüber P, Gurusinga FF, Hurka S, Vilcinskas A, Tegtmeier D. Turning trash into treasure: Hermetia illucens microbiome and biodegradation of industrial side streams. Appl Environ Microbiol 2024:e0099124. [PMID: 39436059 DOI: 10.1128/aem.00991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Black soldier fly larvae (BSFL) have attracted attention due to their ability to upcycle various biological side streams into valuable biomass, such as proteins, lipids, and chitin. In this study, we investigated the impact of high-fiber diets on larval growth performance and the shift of microbes in the gut. We tested empty fruit bunches (EFB), potato pulp (PP), and cottonseed press cake (CPC), with chicken feed (CF) used as a control diet. We found that larvae reared on the EFB, PP, and CPC were smaller than control larvae at the end of development due to the low nutritional value of the diets. However, survival rates of more than 90% were observed regardless of the diet. We used a cultivation-dependent approach to analyze the microbial community in the gut of BSFL, isolated, and identified a total of 329 bacterial strains. Bacillaceae were most frequently isolated from larvae reared on the high-fiber EFB diet. These isolates were predicted to degrade cellulose in silico and this was subsequently confirmed in vitro using the Congo Red assay. Whereas the members of Enterobacteriaceae and Morganellaceae were mostly found in guts of larvae reared on the high-protein diets CPC and CF. We conclude that the gut microbiome plays a crucial role in the digestion of fiber-rich plant organic material, thereby enabling the BSFL to successfully complete their life cycle also on substrates with low nutritional value. As a result, BSFL convert industrial side streams into valuable biomass, reducing waste and promoting sustainability. IMPORTANCE Organic side streams from various industries pose a challenge to the environment. They are often present in huge amounts and are mostly discarded, incinerated, used for biogas production, or as feed for ruminant animals. Many plant-based side streams contain difficult-to-digest fiber as well as anti-nutritional or even insecticidal compounds that could harm the animals. These challenges can be addressed using black soldier fly larvae, which are known to degrade various organic substrates and convert them into valuable biomass. This will help mitigate agro-industrial side streams via efficient waste management and will contribute to the more economical and sustainable farming of insects.
Collapse
Affiliation(s)
- Patrick Klüber
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Friscasari F Gurusinga
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| | - Sabine Hurka
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Giessen, Germany
| | - Dorothee Tegtmeier
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| |
Collapse
|
2
|
Chen Q, Xiong Q, Zhou Z, Li X. Screening of oxytetracycline-degrading strains in the intestine of the black soldier fly larvae and their degradation characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124929. [PMID: 39260545 DOI: 10.1016/j.envpol.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The presence of excessive antibiotic residues poses a significant threat to human health and the environment. This study was designed to identify an effective oxytetracycline (OTC)-degrading strain through the screening of the intestine of black soldier fly larvae (BSFL). A strain designated "B2" was selected using a series of traditional microbial screening methods. It could be identified as Enterococcus faecalis by Gram staining and 16S rDNA sequencing, with a similarity of 99.93%. Its ability to degrade OTC was then assessed using high-performance liquid chromatography (HPLC). The degradation of the strain was characterized using a one-way test to assess the effects of the substrate concentration, inoculum amount, and initial pH on the degrading bacteria. The results indicate that strain B2 exhibited optimal OTC-degrading performance at a substrate concentration of 50 mg/L, with an inoculum amount of 6% and a pH value of 5.0. Specifically, strain B2 achieved degradation rates of 71.11%, 56.14%, and 45.03%. These findings demonstrate the effectiveness of strain B2 in degrading OTC, indicating its potential for use in environmental remediation efforts.
Collapse
Affiliation(s)
- Qian Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China; College of Pharmacy, Nanjing Tech University, Nanjing, 211800, China.
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China.
| | - Zhihao Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China.
| | - Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
3
|
Švedienė J, Raudonienė V, Mizerienė G, Rimšaitė J, Davenis SA, Ivinskis P. First Data on the Investigation of Gut Yeasts in Hermit Beetle ( Osmoderma barnabita Motschulsky, 1845) Larvae in Lithuania. J Fungi (Basel) 2024; 10:442. [PMID: 39057327 PMCID: PMC11277970 DOI: 10.3390/jof10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, yeasts from the gut of O. barnabita larvae were isolated and molecularly identified. It is worth noting that this research provides the first analysis of the gut yeast community in O. barnabita larvae in Lithuania, which is a significant contribution to the field. Two hermit-like L3-praepupa instars were collected from a decaying oak log in Lithuania. The isolation, morphology, biochemistry, and physiology of the yeast isolates were characterized using standards commonly employed in yeast taxonomy studies. The isolates were identified by sequencing the large subunit (26S) rDNA (D1/D2 domain of the LSU). All gut compartments were colonized by the yeast. A total of 45 yeast strains were obtained from the gut of both O. barnabita larvae, with 23 strains originating from Larva 1, 16 strains from Larva 2, and 6 strains from the galleries. According to our identification results of the 45 yeast strains, most of the species were related to Ascomycota, with most of them belonging to the Saccharomycetales order. Yeasts of the genera Candida, Debaryomyces, Meyerozyma, Priceomyces, Schwanniomyces, Spencermartinsiella, Trichomonascus, and Blastobotrys were present in gut of O. barnabita larvae. Species of the Trichosporonales order represented the Basidiomycota phylum.
Collapse
Affiliation(s)
- Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Vita Raudonienė
- Laboratory of Biodeterioration Research, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Goda Mizerienė
- Laboratory of Plant Pathology, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Jolanta Rimšaitė
- Laboratory of Entomology, Nature Research Centre, 08412 Vilnius, Lithuania; (J.R.); (S.A.D.); (P.I.)
| | - Sigitas Algis Davenis
- Laboratory of Entomology, Nature Research Centre, 08412 Vilnius, Lithuania; (J.R.); (S.A.D.); (P.I.)
| | - Povilas Ivinskis
- Laboratory of Entomology, Nature Research Centre, 08412 Vilnius, Lithuania; (J.R.); (S.A.D.); (P.I.)
| |
Collapse
|
4
|
Mani K, Vitenberg T, Khatib S, Opatovsky I. Effect of entomopathogenic fungus Beauveria bassiana on the growth characteristics and metabolism of black soldier fly larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105684. [PMID: 38072541 DOI: 10.1016/j.pestbp.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Beauveria bassiana is an entomopathogenic fungus widely used in agriculture to reduce populations of various pests. However, when agricultural waste is utilized for organic recycling, B. bassiana has the potential to impact recycling performance, by affecting the survival, and body mass of decomposing organisms (such as insect's larvae). Additionally, in natural conditions where decayed organic matter contains a high load of different entomopathogenic organisms, larval growth may be affected when consumed or in contact. In a laboratory study, we aimed to comprehend the effects of B. bassiana on the growth characteristics and larval metabolism of the black soldier fly larvae, which is a known decomposing insect. The experiments used both feeding (mixing the spores with the diet, hereafter BF) and contact treatments (by dipping the larva in the spores solution, hereafter BD), and were compared to a water-treated control group. The BF treatment significantly reduced larval body weight, adult emergence, and adult weight compared to both the control and the BD treatment. Furthermore, an analysis of hemolymph metabolites, categorized by class, indicated a higher accumulation of metabolites belonging to the purine and purine derivative classes, as well as carboxylic acids and their derivatives, including peptides and oligopeptides, indicating potential disruption of protein synthesis or degradation caused by the BF treatment. Pathway enrichment analysis showed significant alterations in purine metabolism and D-Arginine and D-ornithine metabolism compared to the control. Taurine and hypotaurine metabolism were significantly altered in the BD treatment compared to the control but not significantly enriched in the BF treatment. Our results suggest that the BF treatment impairs protein synthesis or degradation, affecting larval growth characteristics. Future studies should explore innate immunity-related gene expression and antimicrobial peptide production in BSF larvae to understand their immunity to pathogens.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Tzach Vitenberg
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Soliman Khatib
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Itai Opatovsky
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
5
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
6
|
He Z, Yang C, Peng Y, Liu T, Wang Z, Xiong C. Effect of Adding De-Oiled Kitchen Water on the Bioconversion of Kitchen Waste Treatment Residue by Black Soldier Fly Larvae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2577. [PMID: 36767945 PMCID: PMC9915709 DOI: 10.3390/ijerph20032577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
With the continuous development of society, the output of kitchen waste (KW) is fast increasing. De-oiled kitchen water (DKW) and kitchen waste treatment residue (KWTR), two main by-products of the KW treatment industry, are produced accordingly on a large scale. The need to develop an effective technique for the utilization of DKW and KWTR is attracting wide attention. In the present study, black soldier fly larvae (BSFL) were employed as a biological treatment method to treat KWTR with the addition of DKW. The influence of DKW (0-140 mL) on the efficiency of BSFL treatment evaluated by the growth and development of BSFL, the body composition of BSFL, the nutrient content of bioconversion residue (BR), and the bioconversion efficiency of KWTR, was investigated. The results showed that the growth and development of BSFL, the body composition of BSFL, and the conversion rate of KWTR were initially promoted and then inhibited with the addition of DKW. Notably, the amount of DKW added in the T110 group was the most suitable for the growth of BSFL and the accumulation of body composition. Compared with the blank comparison group, the content of crude protein (CP), crude ash (CA), salinity, total phosphorus (TP), and dry matter (DM) of BSFL in the T110 group increased by 3.54%, 6.85%, 0.98%, 0.07% and 2.98%, respectively. However, the addition of DKW could steadily increase the nutrient content of BR, with the highest amount at 140 mL DKW. Following DKW addition, the contents of CP, ether extract (EE), crude fiber (CF), organic matter (OM), total nitrogen (TN), TP, and total potassium (TK) were increased by 4.56%, 3.63%, 10.53%, 5.14%, 0.73%, 0.75%, and 0.52%, respectively, compared with those of the blank comparison group. The study showed that DKW could be used as a nutrient additive in the bioconversion process of KWTR by BSFL, which provided a new method for the resource utilization of DKW.
Collapse
Affiliation(s)
- Zhuojun He
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Cheng Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- Research Center of Solid Waste Pollution Control and Recycling Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yan Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- Research Center of Solid Waste Pollution Control and Recycling Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Taoze Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- Research Center of Solid Waste Pollution Control and Recycling Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- Research Center of Solid Waste Pollution Control and Recycling Engineering, Guizhou Minzu University, Guiyang 550025, China
| | | |
Collapse
|
7
|
Gorrens E, Lecocq A, De Smet J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms 2023; 11:245. [PMID: 36838211 PMCID: PMC9960648 DOI: 10.3390/microorganisms11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Given the novelty of the industrial production of the edible insects sector, research has primarily focused on the zootechnical performances of black soldier fly larvae (BSFL) in response to different substrates and rearing conditions as a basis to optimize yield and quality. However recently, research has started to focus more on the associated microbes in the larval digestive system and their substrates and the effect of manipulating the composition of these communities on insect performance as a form of microbiome engineering. Here we present an overview of the existing literature on the use of microorganisms during rearing of the BSFL to optimize the productivity of this insect. These studies have had variable outcomes and potential explanations for this variation are offered to inspire future research that might lead to a better success rate for microbiome engineering in BSFL.
Collapse
Affiliation(s)
- Ellen Gorrens
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| |
Collapse
|
8
|
Yu Y, Zhang J, Zhu F, Fan M, Zheng J, Cai M, Zheng L, Huang F, Yu Z, Zhang J. Enhanced protein degradation by black soldier fly larvae ( Hermetia illucens L.) and its gut microbes. Front Microbiol 2023; 13:1095025. [PMID: 36704554 PMCID: PMC9871565 DOI: 10.3389/fmicb.2022.1095025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Black soldier fly larvae (BSFL) can convert a variety of organic wastes into biomass, and its gut microbiota are involved in this process. However, the role of gut microbes in the nutrient metabolism of BSFL is unclear. In this study, germ-free BSFL (GF) and gnotobiotic BSFL (GB) were evaluated in a high-protein artificial diet model. We used 16S rDNA sequencing, ITS1 sequencing, and network analysis to study gut microbiota in BSFL that degrade proteins. The protein reduction rate of the GB BSFL group was significantly higher (increased by 73.44%) than that of the GF BSFL group. The activity of gut proteinases, such as trypsin and peptidase, in the GB group was significantly higher than the GF group. The abundances of different gut microbes, including Pseudomonas spp., Orbus spp. and Campylobacter spp., were strongly correlated with amino acid metabolic pathways. Dysgonomonas spp. were strongly correlated with protein digestion and absorption. Issatchenkia spp. had a strong correlation with pepsin activity. Campylobacter spp., Pediococcus spp. and Lactobacillus spp. were strongly correlated with trypsin activity. Lactobacillus spp. and Bacillus spp. were strongly correlated with peptidase activity. Gut microbes such as Issatchenkia spp. may promote the gut proteolytic enzyme activity of BSFL and improve the degradation rate of proteins. BSFL protein digestion and absorption involves gut microbiota that have a variety of functions. In BSFL the core gut microbiota help complete protein degradation. These results demonstrate that core gut microbes in BSFL are important in protein degradation.
Collapse
Affiliation(s)
- Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxia Fan
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, China,*Correspondence: Jibin Zhang, ✉
| |
Collapse
|
9
|
First Evidence of Past and Present Interactions between Viruses and the Black Soldier Fly, Hermetia illucens. Viruses 2022; 14:v14061274. [PMID: 35746744 PMCID: PMC9231314 DOI: 10.3390/v14061274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Black soldier flies (BSFs, Hermetia illucens) are becoming a prominent research model encouraged by the insect as food and feed and waste bioconversion industries. Insect mass-rearing facilities are at risk from the spread of viruses, but so far, none have been described in BSFs. To fill this knowledge gap, a bioinformatic approach was undertaken to discover viruses specifically associated with BSFs. First, BSF genomes were screened for the presence of endogenous viral elements (EVEs). This led to the discovery and mapping of seven orthologous EVEs integrated into three BSF genomes originating from five viral families. Secondly, a virus discovery pipeline was used to screen BSF transcriptomes. This led to detecting a new exogenous totivirus that we named hermetia illucens totivirus 1 (HiTV1). Phylogenetic analyses showed this virus belongs to a clade of insect-specific totiviruses and is closely related to the largest EVE located on chromosome 1 of the BSF genome. Lastly, this EVE was found to express a small transcript in some BSFs infected by HiTV1. Altogether, this data mining study showed that far from being unscathed from viruses, BSFs bear traces of past interactions with several viral families and of present interactions with the exogenous HiTV1.
Collapse
|
10
|
Diet Fermentation Leads to Microbial Adaptation in Black Soldier Fly (Hermetia illucens; Linnaeus, 1758) Larvae Reared on Palm Oil Side Streams. SUSTAINABILITY 2022. [DOI: 10.3390/su14095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insects offer a promising alternative source of protein to mitigate the environmental consequences of conventional livestock farming. Larvae of the black soldier fly (Hermetia illucens; Linnaeus, 1758) efficiently convert a variety of organic side streams and residues into valuable proteins, lipids, and chitin. Here, we evaluated the suitability of two palm oil industry side streams—empty fruit bunches (EFB) and palm kernel meal (PKM)—as larval feed, and their impact on the larval gut microbiome. Among 69 fungal species we screened, Marasmius palmivorus, Irpex consors, and Bjerkandera adusta achieved the fastest growth and lignin degradation, so these fungi were used for the pretreatment of 7:3 mixtures of EFB and PKM. Larvae reared on the mixture pretreated with B. adusta (BAD) developed significantly more quickly and reached a higher final weight than those reared on the other pretreatments or the non-fermented reference (NFR). Amplicon sequencing of the BAD and NFR groups revealed major differences in the larval gut microbiome. The NFR group was dominated by facultatively anaerobic Enterobacteriaceae (typical of H. illucens larvae) whereas the BAD group favored obligately anaerobic, cellulolytic bacteria (Ruminococcaceae and Lachnospiraceae). We hypothesize that fungal lignin degradation led to an accumulation of mycelia and subsequent cellulolytic breakdown of fiber residues, thus improving substrate digestibility.
Collapse
|