1
|
Putrino A, Marinelli E, Galeotti A, Ferrazzano GF, Ciribè M, Zaami S. A Journey into the Evolution of Human Host-Oral Microbiome Relationship through Ancient Dental Calculus: A Scoping Review. Microorganisms 2024; 12:902. [PMID: 38792733 PMCID: PMC11123932 DOI: 10.3390/microorganisms12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most promising areas of research in palaeomicrobiology is the study of the human microbiome. In particular, ancient dental calculus helps to reconstruct a substantial share of oral microbiome composition by mapping together human evolution with its state of health/oral disease. This review aims to trace microbial characteristics in ancient dental calculus to describe the evolution of the human host-oral microbiome relationship in oral health or disease in children and adults. Following the PRISMA-Extension for Scoping Reviews guidelines, the main scientific databases (PubMed, Scopus, Lilacs, Cochrane Library) have been drawn upon. Eligibility criteria were established, and all the data collected on a purpose-oriented collection form were analysed descriptively. From the initial 340 records, only 19 studies were deemed comprehensive enough for the purpose of this review. The knowledge of the composition of ancient oral microbiomes has broadened over the past few years thanks to increasingly well-performing decontamination protocols and additional analytical avenues. Above all, metagenomic sequencing, also implemented by state-of-the-art bioinformatics tools, allows for the determination of the qualitative-quantitative composition of microbial species associated with health status and caries/periodontal disease. Some microbial species, especially periodontal pathogens, do not appear to have changed in history, while others that support caries disease or oral health could be connected to human evolution through lifestyle and environmental contributing factors.
Collapse
Affiliation(s)
- Alessandra Putrino
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Angela Galeotti
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
| | - Gianmaria Fabrizio Ferrazzano
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
- UNESCO Chair in Health Education and Sustainable Development, Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy
- East-Asian-Pacific International Academic Consortium
| | - Massimiliano Ciribè
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
2
|
Reynoso-García J, Santiago-Rodriguez TM, Narganes-Storde Y, Cano RJ, Toranzos GA. Edible flora in pre-Columbian Caribbean coprolites: Expected and unexpected data. PLoS One 2023; 18:e0292077. [PMID: 37819893 PMCID: PMC10566737 DOI: 10.1371/journal.pone.0292077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Coprolites, or mummified feces, are valuable sources of information on ancient cultures as they contain ancient DNA (aDNA). In this study, we analyzed ancient plant DNA isolated from coprolites belonging to two pre-Columbian cultures (Huecoid and Saladoid) from Vieques, Puerto Rico, using shotgun metagenomic sequencing to reconstruct diet and lifestyles. We also analyzed DNA sequences of putative phytopathogenic fungi, likely ingested during food consumption, to further support dietary habits. Our findings show that pre-Columbian Caribbean cultures had a diverse diet consisting of maize (Zea mays), sweet potato (Ipomoea batatas), chili peppers (Capsicum annuum), peanuts (Arachis spp.), papaya (Carica papaya), tomato (Solanum lycopersicum) and, very surprisingly cotton (Gossypium barbadense) and tobacco (Nicotiana sylvestris). Modelling of putative phytopathogenic fungi and plant interactions confirmed the potential consumption of these plants as well as edible fungi, particularly Ustilago spp., which suggest the consumption of maize and huitlacoche. These findings suggest that a variety of dietary, medicinal, and hallucinogenic plants likely played an important role in ancient human subsistence and societal customs. We compared our results with coprolites found in Mexico and the United States, as well as present-day faeces from Mexico, Peru, and the United States. The results suggest that the diet of pre-Columbian cultures resembled that of present-day hunter-gatherers, while agriculturalists exhibited a transitional state in dietary lifestyles between the pre-Columbian cultures and larger scale farmers and United States individuals. Our study highlights differences in dietary patterns related to human lifestyles and provides insight into the flora present in the pre-Columbian Caribbean area. Importantly, data from ancient fecal specimens demonstrate the importance of ancient DNA studies to better understand pre-Columbian populations.
Collapse
Affiliation(s)
- Jelissa Reynoso-García
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | - Raul J. Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Gary A. Toranzos
- Environmental Microbiology Laboratory, Biology Department, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
3
|
The Role of the Mycobiome in Women’s Health. J Fungi (Basel) 2023; 9:jof9030348. [PMID: 36983516 PMCID: PMC10051763 DOI: 10.3390/jof9030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Although the human bacteriome and virome have gained a great deal of attention over the years, the human mycobiome has been far more neglected despite having significant value and implications in human health. In women, mycobiome profiles in breastmilk, vaginal regions, the gut, skin, and the oral cavity can provide insight into women’s health, diseases, and microbiome dysbiosis. Analyses of mycobiome composition under factors, such as health, age, diet, weight, and drug exposure (including antibiotic therapies), help to elucidate the various roles of women’s mycobiome in homeostasis, microbiome interactions (synergistic and antagonistic), and health. This review summarizes the most recent updates to mycobiome knowledge in these critical areas.
Collapse
|
4
|
Auchtung TA, Stewart CJ, Smith DP, Triplett EW, Agardh D, Hagopian WA, Ziegler AG, Rewers MJ, She JX, Toppari J, Lernmark Å, Akolkar B, Krischer JP, Vehik K, Auchtung JM, Ajami NJ, Petrosino JF. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat Commun 2022; 13:3151. [PMID: 35672407 PMCID: PMC9174155 DOI: 10.1038/s41467-022-30686-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are a major health problem that often begin in the gastrointestinal tract. Gut microbe interactions in early childhood are critical for proper immune responses, yet there is little known about the development of the fungal population from infancy into childhood. Here, as part of the TEDDY (The Environmental Determinants of Diabetes in the Young) study, we examine stool samples of 888 children from 3 to 48 months and find considerable differences between fungi and bacteria. The metagenomic relative abundance of fungi was extremely low but increased while weaning from milk and formula. Overall fungal diversity remained constant over time, in contrast with the increase in bacterial diversity. Fungal profiles had high temporal variation, but there was less variation from month-to-month in an individual than among different children of the same age. Fungal composition varied with geography, diet, and the use of probiotics. Multiple Candida spp. were at higher relative abundance in children than adults, while Malassezia and certain food-associated fungi were lower in children. There were only subtle fungal differences associated with the subset of children that developed islet autoimmunity or type 1 diabetes. Having proper fungal exposures may be crucial for children to establish appropriate responses to fungi and limit the risk of infection: the data here suggests those gastrointestinal exposures are limited and variable.
Collapse
Grants
- U01 DK063821 NIDDK NIH HHS
- UC4 DK063863 NIDDK NIH HHS
- UL1 TR002535 NCATS NIH HHS
- U01 DK063790 NIDDK NIH HHS
- UL1 TR000064 NCATS NIH HHS
- HHSN267200700014C NLM NIH HHS
- U01 DK063836 NIDDK NIH HHS
- U01 DK063829 NIDDK NIH HHS
- U01 DK063865 NIDDK NIH HHS
- UC4 DK095300 NIDDK NIH HHS
- UC4 DK063861 NIDDK NIH HHS
- UC4 DK063829 NIDDK NIH HHS
- UC4 DK063821 NIDDK NIH HHS
- UC4 DK117483 NIDDK NIH HHS
- UC4 DK063836 NIDDK NIH HHS
- UC4 DK112243 NIDDK NIH HHS
- U01 DK124166 NIDDK NIH HHS
- U01 DK063861 NIDDK NIH HHS
- P30 ES030285 NIEHS NIH HHS
- U01 DK128847 NIDDK NIH HHS
- UC4 DK063865 NIDDK NIH HHS
- U01 DK063863 NIDDK NIH HHS
- UC4 DK106955 NIDDK NIH HHS
- UC4 DK100238 NIDDK NIH HHS
- This research was performed on behalf of the TEDDY Study Group, which is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, U01 DK124166, U01 DK128847, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535).
Collapse
Affiliation(s)
- Thomas A Auchtung
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | | | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes, Technische Universität München, Klinikum Rechts der Isar, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Jinfiniti Precision Medicine, Inc, Augusta, GA, USA
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jennifer M Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|