1
|
R B Brown S, Sun L, Gensler CA, D'Amico DJ. The impact of subinhibitory concentrations of Ɛ- polylysine, hydrogen peroxide, and lauric arginate on Listeria monocytogenes virulence. J Food Prot 2024:100385. [PMID: 39427815 DOI: 10.1016/j.jfp.2024.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Recent studies on the use of plant-derived and other bioactive compounds and antimicrobials in food have challenged the idea that exposure to antimicrobials at sub-lethal or subinhibitory concentrations (SIC) increases the virulence potential of bacterial pathogens including Listeria monocytogenes. The objective of this study was to determine the effect of exposure to SICs of Ɛ -polylysine (EPL), hydrogen peroxide (HP), and lauric arginate (LAE) on L. monocytogenes virulence. For all assays, L. monocytogenes strains Scott A and 2014L-6025 were grown to mid-log phase in the presence of SICs of EPL, HP, or LAE. Motility was determined by spot inoculating cultures on soft brain heart infusion agar (0.3% agar). Cultures grown in SICs of antimicrobials were also inoculated onto Caco-2 cells (10:1 MOI) to determine the effects on subsequent adhesion and invasion. Last, relative expression of key virulence genes (prfA, plcB, hlyA, actA, inlA, inlB, sigB, and virR) following growth in SICs were determined by RT-qPCR. Results indicate that L. monocytogenes growth in the presence of SICs of EPL, HP, or LAE did not affect the motility, adhesion, or invasion capacity of either strain. Changes in gene expression were observed for both L. monocytogenes strains. More specifically, SICs of EPL and LAE reduced hlyA expression in Scott A, whereas SICs of EPL and HP increased expression of virR. The upregulation of sigB and actA in the presence of EPL and LAE, respectively, was observed in strain 2014L-6025. These findings indicate that exposure to SICs of these antimicrobials have varying effects on L. monocytogenes that differ by strain. Although no phenotypic effects were observed in terms of motility, adhesion, and invasion, the observed changes in virulence gene expression warrants further investigation.
Collapse
Affiliation(s)
- Stephanie R B Brown
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Lang Sun
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Catherine A Gensler
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Dennis J D'Amico
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA.
| |
Collapse
|
2
|
Liao C, Yu C, Guo J, Guan M. Subinhibitory concentrations of glabridin from Glycyrrhiza glabra L. reduce Listeria monocytogenes motility and hemolytic activity but do not exhibit antimicrobial activity. Front Microbiol 2024; 15:1388388. [PMID: 39086651 PMCID: PMC11288822 DOI: 10.3389/fmicb.2024.1388388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Increases in the virulence and survival of some pathogens in the presence of subinhibitory concentrations of antibiotics have been reported. However, research on the effects of subinhibitory concentrations of antimicrobial substances derived from traditional Chinese medicine on pathogens is still insufficient. Glabridin is a well-known active isoflavone found in licorice roots that possesses a wide range of biological activities. Therefore, in this study, Listeria monocytogenes (L. monocytogenes) exposed to subinhibitory concentrations of glabridin was used as the research object. The minimum inhibitory concentration (MIC) was determined for L. monocytogenes. We investigated the impacts of subinhibitory concentrations of glabridin on the morphology, motility, biofilm formation, adherence, and survival of L. monocytogenes. The results indicated that the MIC of glabridin for L. monocytogenes was 31.25 μg/mL. At 1/8, 1/4, or 1/2 of the MIC, glabridin did not affect the growth, morphology, flagellar production, or biofilm formation of L. monocytogenes. However, subinhibitory concentrations of glabridin inhibited bacterial swimming and swarming motility and decreased the hemolytic activity of L. monocytogenes. Glabridin reduced the hemolytic activity of L. monocytogenes culture supernatants. The results also showed that subinhibitory concentrations of glabridin had no toxic effect on RAW264.7 cells but decreased the intracellular growth of L. monocytogenes in RAW264.7 cells. Furthermore, subinhibitory concentrations of glabridin triggered ROS production but did not induce MET formation in macrophages. In addition, glabridin did not enhance the capacity of L. monocytogenes to trigger METs or the extracellular killing of macrophages by METs. Thus, we conclude that subinhibitory concentrations of glabridin reduce L. monocytogenes motility and hemolytic activity but do not exhibit antimicrobial activity. Glabridin could be an interesting food additive as a bacteriostatic agent with anti-Listeria activity.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Jinxiang Guo
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Mengxiang Guan
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
3
|
Pan X, Shen J, Hong Y, Wu Y, Guo D, Zhao L, Bu X, Ben L, Wang X. Comparative Analysis of Growth, Survival, and Virulence Characteristics of Listeria monocytogenes Isolated from Imported Meat. Microorganisms 2024; 12:345. [PMID: 38399749 PMCID: PMC10891628 DOI: 10.3390/microorganisms12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen with worldwide prevalence. Understanding the variability in the potential pathogenicity among strains of different subtypes is crucial for risk assessment. In this study, the growth, survival, and virulence characteristics of 16 L. monocytogenes strains isolated from imported meat in China (2018-2020) were investigated. The maximum specific growth rate (μmax) and lag phase (λ) were evaluated using the time-to-detection (TTD) method and the Baranyi model at different temperatures (25, 30, and 37 °C). Survival characteristics were determined by D-values and population reduction after exposure to heat (60, 62.5, and 65 °C) and acid (HCl, pH = 2.5, 3.5, and 4.5). The potential virulence was evaluated via adhesion and invasion to Caco-2 cells, motility, and lethality to Galleria mellonella. The potential pathogenicity was compared among strains of different lineages and subtypes. The results indicate that the lineage I strains exhibited a higher growth rate than the lineage II strains at three growth temperatures, particularly serotype 4b within lineage I. At all temperatures tested, serotypes 1/2a and 1/2b consistently demonstrated higher heat resistance than the other subtypes. No significant differences in the log reduction were observed between the lineage I and lineage II strains at pH 2.5, 3.5, and 4.5. However, the serotype 1/2c strains exhibited significantly low acid resistance at pH 2.5. In terms of virulence, the lineage I strains outperformed the lineage II strains. The invasion rate to Caco-2 cells and lethality to G. mellonella exhibited by the serotype 4b strains were higher than those observed in the other serotypes. This study provides meaningful insights into the growth, survival, and virulence of L. monocytogenes, offering valuable information for understanding the correlation between the pathogenicity and subtypes of L. monocytogenes.
Collapse
Affiliation(s)
- Xinye Pan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Leijie Ben
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| |
Collapse
|
4
|
Meesakul P, Shea T, Fenstemacher R, Wong SX, Kuroki Y, Wada A, Cao S. Phytochemistry and Biological Studies of Endemic Hawaiian Plants. Int J Mol Sci 2023; 24:16323. [PMID: 38003513 PMCID: PMC10670932 DOI: 10.3390/ijms242216323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The Hawaiian Islands are renowned for their exceptional biodiversity and are host to a plethora of endemic plant species, which have been utilized in traditional Hawaiian medicine. This scientific review provides an in-depth analysis of the phytochemistry and biological studies of selected endemic Hawaiian plants, highlighting their medicinal properties and therapeutic potential. A literature search was conducted, utilizing major academic databases such as SciFinder, Scopus, Web of Science, PubMed, Google Scholar, Science Direct, and the Scientific Information Database. The primary objective of this search was to identify relevant scholarly articles pertaining to the topic of the review, which focused on the phytochemistry and biological studies of endemic Hawaiian plants. Utilizing these databases, a comprehensive range of literature was obtained, facilitating a comprehensive examination of the subject matter. This review emphasizes the rich phytochemical diversity and biological activities found in Endemic Hawaiian plants, showcasing their potential as sources of novel therapeutic agents. Given the unique biodiversity of Hawaii and the cultural significance of these plants, continued scientific exploration, conservation, and sustainable utilization of these valuable resources is necessary to unlock the full potential of these plant species in drug discovery and natural product-based therapeutics.
Collapse
Affiliation(s)
- Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| | - Tyler Shea
- Chemistry Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| | - Roland Fenstemacher
- Chemistry Laboratory, Board of Water Supply, City and County of Honolulu, 630 South Beretania Street, Honolulu, HI 96843, USA
| | - Shi Xuan Wong
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore
| | - Yutaka Kuroki
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore
| | - Aya Wada
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| |
Collapse
|
5
|
Rendueles E, Mauriz E, Sanz-Gómez J, Adanero-Jorge F, García-Fernandez C. Antimicrobial Activity of Spanish Propolis against Listeria monocytogenes and Other Listeria Strains. Microorganisms 2023; 11:1429. [PMID: 37374931 DOI: 10.3390/microorganisms11061429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The outbreaks of Listeria associated with food consumption are increasing worldwide concurrently with public concern about the need for natural growth inhibitors. In this context, propolis seems to be a promising bioactive product collected by honeybees, due to its antimicrobial activity against different food pathogens. This study aims to evaluate the efficacy of hydroalcoholic propolis extracts for controlling Listeria under several pH conditions. The physicochemical properties (wax, resins, ashes, impurities), the bioactive compounds (phenolic and flavonoid content), and the antimicrobial activity of 31 propolis samples collected from the half North of Spain were determined. Results showed similar trends in the physicochemical composition and bioactive properties, regardless of the harvesting area. Non-limiting pH conditions (7.04, 6.01, 5.01) in 11 Listeria strains (5 from collection and 6 wild strains from meat products) exhibited MICs (Minimum inhibition concentration) and MBCs (Minimum bactericidal concentration) ranging from 39.09 to 625 μg/mL. The antibacterial activity increased under acidic pH conditions, showing a synergistic effect at pH = 5.01 (p < 0.05). These findings suggest the potential of Spanish propolis as a natural antibacterial inhibitor to control Listeria growth in food products.
Collapse
Affiliation(s)
- Eugenia Rendueles
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León (ICTAL), La Serna 58, 24007 León, Spain
| | - Elba Mauriz
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León (ICTAL), La Serna 58, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León (ICTAL), La Serna 58, 24007 León, Spain
| | - Félix Adanero-Jorge
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| | - Camino García-Fernandez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|
6
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
7
|
Park YJ, Kang CE, Kim JH, Shin D, Lee DH, Lee NK, Paik HD. Antibacterial mechanism of mixed natural preservatives (ε-poly-Lysine, cinnamon extract, and chestnut inner shell extract) against Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Drug synergy discovery of tavaborole and aminoglycosides against Escherichia coli using high throughput screening. AMB Express 2022; 12:151. [PMID: 36454354 PMCID: PMC9715904 DOI: 10.1186/s13568-022-01488-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
High incidences of urinary tract infection (UTI) of aminoglycosides-resistant E.coli causes a severe burden for public health. A new therapeutic strategy to ease this crisis is to repurpose non-antibacterial compounds to increase aminoglycosides sensibility against multidrug resistant E.coli pathogens. Based on high throughput screening technology, we profile the antimicrobial activity of tavaborole, a first antifungal benzoxaborole drug for onychomycosis treatment, and investigate the synergistic interaction between tavaborole and aminoglycosides, especially tobramycin and amikacin. Most importantly, by resistance accumulation assay, we found that, tavaborole not only slowed resistance occurrence of aminoglycosides, but also reduced invasiveness of E.coli in combination with tobramycin. Mechanistic studies preliminary explored that tavaborole and aminoglycosides lead to mistranslation, but would be still necessary to investigate more details for further research. In addition, tavaborole exhibited low systematic toxicity in vitro and in vivo, and enhanced aminoglycoside bactericidal activity in mice peritonitis model. Collectively, these results suggest the potential of tavaborole as a novel aminoglycosides adjuvant to tackle the clinically relevant drug resistant E. coli and encourages us to discover more benzoxaborole analogues for circumvention of recalcitrant infections.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
9
|
Liu X, Wu B, Nakamoto ST, Imamura JL, Li Y. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 Growth by Ohelo Berry ( Vaccinium calycinum) Fractions: Anthocyanins, Non-Anthocyanin Phenolics, and Organic Acids. Microorganisms 2022; 10:2231. [PMID: 36422300 PMCID: PMC9695477 DOI: 10.3390/microorganisms10112231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2023] Open
Abstract
Listeria monocytogenes and Escherichia coli O157:H7 are common causes of foodborne illness worldwide. Ohelo berry (Vaccinium calycinum) juice was found to possess inhibitory activity against L. monocytogenes. This study aimed to determine which constituents of ohelo berry have the most potent antimicrobial effects. The crude extract of ohelo berry was separated into sugar plus organic acids (F1), non-anthocyanin phenolics (F2), and anthocyanins (F3). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the fractions were determined against L. monocytogenes and E. coli O157:H7. The results demonstrated that F3 contained the highest concentrations of total phenolics and anthocyanins. All fractions caused a significant growth reduction in two bacteria compared to controls. F1 at native pH had the same MIC (1.39/0.36 Bx/acid) and MBC (5.55/1.06 Bx/acid) against the two bacteria, while neutralized F1 did not inhibit the growth of either pathogen. The MIC of F3 against L. monocytogenes was 13.69 mg/L cyanidin-3-glucoside equivalent, which was not affected by neutralization. Besides, L. monocytogenes was more sensitive than E. coli O157:H7 to all fractions. These findings suggest that both phenolics and organic acids contribute to the antimicrobial properties of ohelo berry, which have the potential to be used as natural food preservatives.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Agricultural Sciences Building 216, Honolulu, HI 96822, USA
| | - Biyu Wu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Agricultural Sciences Building 216, Honolulu, HI 96822, USA
| | - Stuart T. Nakamoto
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Agricultural Sciences Building 216, Honolulu, HI 96822, USA
| | - Joanne L. Imamura
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, 875 Komohana Street, Hilo, HI 96720, USA
| | - Yong Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Agricultural Sciences Building 216, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Buccioni F, Purgatorio C, Maggio F, Garzoli S, Rossi C, Valbonetti L, Paparella A, Serio A. Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study. Microorganisms 2022; 10:920. [PMID: 35630364 PMCID: PMC9146057 DOI: 10.3390/microorganisms10050920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
The increased resistance of bacteria to antimicrobials, as well as the growing interest in innovative and sustainable alternatives to traditional food additives, are driving research towards the use of natural food preservatives. Among these, hydrolates (HYs) have gained attention as "mild" alternatives to conventional antimicrobial compounds. In this study, the response of L. monocytogenes ATCC 7644 exposed to increasing concentrations of Coridothymus capitatus HY (CHY) for 1 h at 37 °C was evaluated by means of Phenotype Microarray, modelling the kinetic data obtained by inoculating control and treated cells into GEN III microplates, after CHY removal. The results revealed differences concerning the growth dynamics in environmental conditions commonly encountered in food processing environments (different carbon sources, pH 6.0, pH 5.0, 1-8% NaCl). More specifically, for treated cells, the lag phase was extended, the growth rate was slowed down and, in most cases, the maximum concentration was diminished, suggesting the persistence of stress even after CHY removal. Confocal Laser Scanner Microscopy evidenced a diffuse aggregation and suffering of the treated cells, as a response to the stress encountered. In conclusion, the treatment with HY caused a stressing effect that persisted after its removal. The results suggest the potential of CHY application to control L. monocytogenes in food environments.
Collapse
Affiliation(s)
- Francesco Buccioni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| | - Chiara Purgatorio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| | - Francesca Maggio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (F.B.); (C.P.); (F.M.); (C.R.); (L.V.); (A.P.)
| |
Collapse
|