1
|
Peran JE, Salvador-Reyes LA. Modified oxylipins as inhibitors of biofilm formation in Staphylococcus epidermidis. Front Pharmacol 2024; 15:1379643. [PMID: 38846101 PMCID: PMC11153713 DOI: 10.3389/fphar.2024.1379643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
New approaches to combating microbial drug resistance are being sought, with the discovery of biofilm inhibitors considered as alternative arsenal for treating infections. Natural products have been at the forefront of antimicrobial discovery and serve as inspiration for the design of new antibiotics. We probed the potency, selectivity, and mechanism of anti-biofilm activity of modified oxylipins inspired by the marine natural product turneroic acid. Structure-activity relationship (SAR) evaluation revealed the importance of the trans-epoxide moiety, regardless of the position, for inhibiting biofilm formation. trans-12,13-epoxyoctadecanoic acid (1) and trans-9,10 epoxyoctadecanoic acid (4) selectively target the early stage of biofilm formation, with no effect on planktonic cells. These compounds interrupt the formation of a protective polysaccharide barrier by significantly upregulating the ica operon's transcriptional repressor. This was corroborated by docking experiment with SarA and scanning electron micrographs showing reduced biofilm aggregates and the absence of thread-like structures of extrapolymeric substances. In silico evaluation revealed that 1 and 4 can interfere with the AgrA-mediated communication language in Staphylococci, typical to the diffusible signal factor (DSF) capacity of lipophilic chains.
Collapse
Affiliation(s)
| | - Lilibeth A. Salvador-Reyes
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
2
|
Schwartbeck B, Rumpf CH, Hait RJ, Janssen T, Deiwick S, Schwierzeck V, Mellmann A, Kahl BC. Various mutations in icaR, the repressor of the icaADBC locus, occur in mucoid Staphylococcus aureus isolates recovered from the airways of people with cystic fibrosis. Microbes Infect 2024; 26:105306. [PMID: 38316375 DOI: 10.1016/j.micinf.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Staphylococcus aureus is one of the major pathogens isolated from the airways of people with cystic fibrosis (pwCF). Recently, we described a mucoid S. aureus phenotype from respiratory specimens of pwCF, which constitutively overproduced biofilm that consisted of polysaccharide intercellular adhesin (PIA) due to a 5bp-deletion (5bp-del) in the intergenic region of the intercellular adhesin (ica) locus. Since we were not able to identify the 5bp-del in mucoid isolates of two pwCF with long-term S. aureus persistence and in a number of mucoid isolates of pwCF from a prospective multicenter study, these strains were (i) characterized phenotypically, (ii) investigated for biofilm formation, and (iii) molecular typed by spa-sequence typing. To screen for mutations responsible for mucoidy, the ica operon of all mucoid isolates was analyzed by Sanger sequencing. Whole genome sequencing was performed for selected isolates. For all mucoid isolates without the 5 bp-del, various mutations in icaR, which is the transcriptional repressor of the icaADBC operon. Mucoid and non-mucoid strains belonged to the same spa-type. Transformation of PIA-overproducing S. aureus with a vector expressing the intact icaR gene restored the non-mucoid phenotype. Altogether, we demonstrated a new mechanism for the emergence of mucoid S. aureus isolates of pwCF.
Collapse
Affiliation(s)
- Bianca Schwartbeck
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Christine H Rumpf
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | - Timo Janssen
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Susanne Deiwick
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Muenster, Germany.
| |
Collapse
|
3
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
4
|
Yu L, Hisatsune J, Kutsuno S, Sugai M. New Molecular Mechanism of Superbiofilm Elaboration in a Staphylococcus aureus Clinical Strain. Microbiol Spectr 2023; 11:e0442522. [PMID: 36719203 PMCID: PMC10100805 DOI: 10.1128/spectrum.04425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
Previously, we reported a novel regulator of biofilm (rob) with a nonsense mutation in the superbiofilm-elaborating strain JP080. Intriguingly, the complementation of JP080 with wild-type rob did not completely abolish its superbiofilm-elaborating phenotype. Therefore, we searched for other possible mutation(s) using complete genome sequence data and found a missense mutation in the gene icaR, which altered its 35th amino acid (Ala35Thr). To further study the mechanism of superbiofilm elaboration in JP080, we reconstructed the same mutations of rob and icaR in the strain FK300 and analyzed the phenotypes. The mutation of rob (A331T) increased biofilm elaboration, as previously demonstrated; similarly, an icaR mutation increased poly-N-acetylglucosamine and biofilm production in strain FK300. Furthermore, our analyses indicated that the double mutant of rob and icaR produced significantly more biofilms than the single mutants. Additionally, gel shift analysis revealed that the icaR from JP080 lost its ability to bind to the ica promoter region. These findings suggest that the icaR mutation in JP080 may result in a nonfunctional protein. We compared ica operon expression in an icaR single mutant, rob single mutant, and rob and icaR double mutant to the wild type. The rob and icaR mutants showed increased ica operon transcription by approximately 19- and 79-fold, respectively. However, the rob and icaR double mutant showed an approximately 350-fold increase, indicating the synergistic effects of icaR and rob on JP080 biofilm elaboration. Consequently, we concluded that the double mutations rob and icaR synergistically increased ica operon transcription, resulting in a superbiofilm phenotype in Staphylococcus aureus. IMPORTANCE Poly-N-acetylglucosamine (PNAG) is a major component of S. aureus biofilm. PNAG production is mediated by the products of four genes, icaADBC encoded in the ica operon, and the major negative regulator of this operon is IcaR encoded just upstream of icaADBC. Previously, we reported another negative regulator, Rob, through gene expression analysis of clinically isolated superbiofilm-elaborating strain JP080. The rob gene is encoded at different loci distant from the ica operon. Here, we report that JP080 also carried a mutation in icaR and demonstrated that IcaR and Rob synergistically regulate PNAG production. We successfully reconstructed these mutations in a wild type, and the double mutant resulted in superbiofilm-elaborating phenotype. We clearly show that loss of function of both IcaR and Rob is the very reason that JP080 is showing the superbiofilm-elaborating phenotype. This study clearly demonstrated there are at least two independent regulators synergistically fine-tuning PNAG production and suggested the complex regulatory mechanism of biofilm production.
Collapse
Affiliation(s)
- Liansheng Yu
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoko Kutsuno
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Morales-Laverde L, Trobos M, Echeverz M, Solano C, Lasa I. Functional analysis of intergenic regulatory regions of genes encoding surface adhesins in Staphylococcus aureus isolates from periprosthetic joint infections. Biofilm 2022; 4:100093. [PMID: 36408060 PMCID: PMC9667196 DOI: 10.1016/j.bioflm.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections (PJI). Surface adhesins play an important role in the primary attachment to plasma proteins that coat the surface of prosthetic devices after implantation. Previous efforts to identify a genetic component of the bacterium that confers an enhanced capacity to cause PJI have focused on gene content, kmers, or single-nucleotide polymorphisms (SNPs) in coding sequences. Here, using a collection of S. aureus strains isolated from PJI and wounds, we investigated whether genetic variations in the regulatory region of genes encoding surface adhesins lead to differences in their expression levels and modulate the capacity of S. aureus to colonize implanted prosthetic devices. The data revealed that S. aureus isolates from the same clonal complex (CC) contain a specific pattern of SNPs in the regulatory region of genes encoding surface adhesins. As a consequence, each clonal lineage shows a specific profile of surface proteins expression. Co-infection experiments with representative isolates of the most prevalent CCs demonstrated that some lineages have a higher capacity to colonize implanted catheters in a murine infection model, which correlated with a greater ability to form a biofilm on coated surfaces with plasma proteins. Together, results indicate that differences in the expression level of surface adhesins may modulate the propensity of S. aureus strains to cause PJI. Given the high conservation of surface proteins among staphylococci, our work lays the framework for investigating how diversification at intergenic regulatory regions affects the capacity of S. aureus to colonize the surface of medical implants.
Collapse
|
6
|
Antibiofilm Effect of Silver Nanoparticles in Changing the Biofilm-Related Gene Expression of Staphylococcus epidermidis. Int J Mol Sci 2022; 23:ijms23169257. [PMID: 36012520 PMCID: PMC9409202 DOI: 10.3390/ijms23169257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, antibiotic resistance is a major public health problem. Among staphylococci, infections caused by Staphylococcus epidermidis (S. epidermidis) are frequent and difficult to eradicate. This is due to its ability to form biofilm. Among the antibiotic substances, nanosilver is of particular interest. Based on this information, we decided to investigate the effect of nanosilver on the viability, biofilm formation and gene expression of the icaADBC operon and the icaR gene for biofilm and non-biofilm S. epidermidis strains. As we observed, the viability of all the tested strains decreased with the use of nanosilver at a concentration of 5 µg/mL. The ability to form biofilm also decreased with the use of nanosilver at a concentration of 3 µg/mL. Genetic expression of the icaADBC operon and the icaR gene varied depending on the ability of the strain to form biofilm. Low concentrations of nanosilver may cause increased biofilm production, however no such effect was observed with high concentrations. This confirms that the use of nanoparticles at an appropriately high dose in any future therapy is of utmost importance. Data from our publication confirm the antibacterial and antibiotic properties of nanosilver. This effect was observed phenotypically and also by levels of gene expression.
Collapse
|
7
|
Landini P, Valle J. Microbial Biofilms: From Molecular Mechanisms and Structure to Antimicrobial Therapy. Microorganisms 2022; 10:microorganisms10081638. [PMID: 36014056 PMCID: PMC9414349 DOI: 10.3390/microorganisms10081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Paolo Landini
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Correspondence:
| | - Jaione Valle
- Instituto de Agrobiotecnología (Idab), CSIC-Gobierno de Navarra (CSIC-GN), 31192 Navarra, Spain
| |
Collapse
|
8
|
Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections. Microorganisms 2022; 10:microorganisms10081573. [PMID: 36013991 PMCID: PMC9414264 DOI: 10.3390/microorganisms10081573] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence of total joint arthroplasty is increasing over time since the last decade and expected to be more than 4 million by 2030. As a consequence, the detection of infections associated with surgical interventions is increasing and prosthetic joint infections are representing both a clinically and economically challenging problem. Many pathogens, from bacteria to fungi, elicit the immune system response and produce a polymeric matrix, the biofilm, that serves as their protection. In the last years, the implementation of diagnostic methodologies reduced the error rate and the turn-around time: polymerase chain reaction, targeted or broad-spectrum, and next-generation sequencing have been introduced and they represent a robust approach nowadays that frees laboratories from the unique approach based on culture-based techniques.
Collapse
|