1
|
Sabtcheva S, Stoikov I, Georgieva S, Donchev D, Hodzhev Y, Dobreva E, Christova I, Ivanov IN. Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria. Antibiotics (Basel) 2024; 13:950. [PMID: 39452216 PMCID: PMC11504970 DOI: 10.3390/antibiotics13100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Acquired 16S rRNA methyltransferases (16S-RMTases) confer high-level resistance to aminoglycosides and are often associated with β-lactam and quinolone resistance determinants. Methods: Using PCR, whole-genome sequencing and conjugation experiments, we conducted a retrospective genomic surveillance study of 16S-RMTase-producing Enterobacterales, collected between 2006 and 2023, to explore transmission dynamics of methyltransferase and associated antibiotic resistance genes. Results: Among the 10,731 consecutive isolates, 150 (1.4%) from 13 species carried armA (92.7%), rmtB (4.7%), and rmtF + rmtB (2.7%) methyltransferase genes. The coexistence of extended-spectrum β-lactamase (blaCTX-M-3/15, blaSHV-12, blaSFO-1), carbapenemase (blaNDM-1/5, blaVIM-1/4/86, blaOXA-48), acquired AmpC (blaCMY-2/4/99, blaDHA-1, blaAAC-1), and plasmid-mediated quinolone resistance (qnrB, qnrS, aac(6')-Ib-cr) genes within these isolates was also detected. Methyltransferase genes were carried by different plasmids (IncL/M, IncA/C, IncR, IncFIB, and IncFII), suggesting diverse origins and sources of acquisition. armA was co-transferred with blaCTX-M-3/15, blaNDM-1, blaVIM-4/86, blaOXA-48, blaCMY-4, aac(6')-Ib-cr, qnrB, and qnrS, while rmtF1 was co-transferred with blaSFO-1, highlighting the multidrug-resistant nature of these plasmids. Long-read sequencing of ST6260 K. pneumoniae isolates revealed a novel resistance association, with rmtB1 and blaNDM-5 on the chromosome, blaOXA-232 on a conjugative ColKP3 plasmid, and rmtF1 with blaSFO-1 on self-transmissible IncFIB and IncFII plasmids. Conclusions: The genetic plasticity of plasmids carrying methyltransferase genes suggests their potential to acquire additional resistance genes, turning 16S-RMTase-producing Enterobacterales into a persistent public health threat.
Collapse
Affiliation(s)
- Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
| | - Ivan Stoikov
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Sylvia Georgieva
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
| | - Deyan Donchev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Yordan Hodzhev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Elina Dobreva
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Iva Christova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Ivan N. Ivanov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| |
Collapse
|
2
|
Markovska R, Stankova P, Popivanov G, Gergova I, Mihova K, Mutafchiyski V, Boyanova L. Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics (Basel) 2024; 13:677. [PMID: 39061359 PMCID: PMC11274196 DOI: 10.3390/antibiotics13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid spread of carbapenemase-producing strains has led to increased levels of resistance among Gram-negative bacteria, especially enterobacteria. The current study aimed to collect and genetically characterize the colistin- and carbapenem-resistant isolates, obtained in one of the biggest hospitals (Military Medical Academy) in Sofia, Bulgaria. Clonal relatedness was detected by RAPD and MLST. Carbapenemases, ESBLs, and mgrB were investigated by PCR amplification and sequencing, replicon typing, and 16S rRNA methyltransferases with PCRs. Fourteen colistin- and carbapenem-resistant K. pneumoniae isolates were detected over five months. Six carbapenem-resistant and colistin-susceptible isolates were also included. The current work revealed a complete change in the spectrum of carbapenemases in Bulgaria. blaNDM-5 was the only NDM variant, and it was always combined with blaOXA-232. The coexistence of blaOXA-232 and blaNDM-5 was observed in 10/14 (72%) of colistin- and carbapenem-resistant K. pneumoniae isolates and three colistin-susceptible isolates. All blaNDM-5- and blaOXA-232-positive isolates belonged to the ST6260 (ST101-like) MLST type. They showed great mgrB variability and had a higher mortality rate. In addition, we observed blaOXA-232 ST14 isolates and KPC-2-producing ST101, ST16, and ST258 isolates. The colistin- and carbapenem-resistant isolates were susceptible only to cefiderocol for blaNDM-5- and blaOXA-232-positive isolates and to cefiderocol and ceftazidime/avibactam for blaOXA-232- or blaKPC-2-positive isolates. All blaOXA-232-positive isolates carried rmtB methylase and the colE replicon type. The extremely limited choice of appropriate treatment for patients infected with such isolates and their faster distribution highlight the need for urgent measures to control this situation.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Georgi Popivanov
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (G.P.); (V.M.)
| | - Ivanka Gergova
- Department of Microbiology and Virology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | | | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
3
|
Carroll A, Carman R, Bannerman T, Pancholi P. Carbapenemase producing Enterobacterales at a large teaching hospital in Ohio: comparison to state surveillance and retrospective analysis of patient characteristics. Infect Prev Pract 2024; 6:100366. [PMID: 38765915 PMCID: PMC11101937 DOI: 10.1016/j.infpip.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background The presence of carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) around the world is increasing, particularly in healthcare settings. Surveillance testing for plasmid-mediated carbapenemase genes is necessary to tracking CP-CRE infections. Aim In the state of Ohio, surveillance of carbapenem-resistant Enterobacterales (CRE) began in 2018, and to the authors' knowledge data on these cases has not been published to date. This study analyzed data on CRE from a large teaching hospital in Ohio, and by the Ohio Department of Health Laboratory (ODHL). Methods Carbapenemase production was detected using mCIM, and plasmid-mediated carbapenemase genes were detected using rtPCR. Data was collected on 344 standard-of-care isolates from a large teaching hospital in Ohio, including data collected from chart review. Deidentified surveillance data on 4,391 CRE isolates was provided by the ODHL. Statistical analysis was performed using binary logistic regression. Findings While KPC was the most common carbapenemase gene (n=1590), NDM (n=98), VIM (n=10), IMP (n=39) and OXA-48 (n=35) were also detected in the isolates studied. Klebsiella pneumoniae and Enterobacter cloacae were the most common CRE, and carbapenemase genes were most commonly detected in K. pneumoniae. Inpatient hospital stays and long-term care were associated with CP-CRE and were more common in women. Conclusion Surveillance data shows that CP-CRE are present in Ohio, most commonly in Klebsiella pneumoniae. A better understanding of the prevalence of CRE, plasmid-mediated carbapenemase genes present, and the populations affected are important when tracking the spread of disease. Further study and surveillance of carbapenem-resistant organisms can provide a better understanding of their prevalence in the state.
Collapse
Affiliation(s)
- Amanda Carroll
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rebekah Carman
- Ohio Department of Health Laboratory, Reynoldsburg, OH, USA
| | - Tammy Bannerman
- School of Health and Rehabilitation Sciences, Medical Laboratory Science Division, The Ohio State University, Columbus, OH, USA
| | - Preeti Pancholi
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
4
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
5
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
6
|
Haeili M, Barmudeh S, Omrani M, Zeinalzadeh N, Kafil HS, Batignani V, Ghodousi A, Cirillo DM. Whole-genome sequence analysis of clinically isolated carbapenem resistant Escherichia coli from Iran. BMC Microbiol 2023; 23:49. [PMID: 36850019 PMCID: PMC9969672 DOI: 10.1186/s12866-023-02796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Enterobacterales (CRE) continues to threaten public health due to limited therapeutic options. In the current study the incidence of carbapenem resistance among the 104 clinical isolates of Escherichia coli and the genomic features of carbapenem resistant isolates were investigated. METHODS The susceptibility to imipenem, tigecycline and colistin was tested by broth dilution method. Susceptibility to other classes of antimicrobials was examined by disk diffusion test. The presence of blaOXA-48, blaKPC, blaNDM, and blaVIM carbapenemase genes was examined by PCR. Molecular characteristics of carbapenem resistant isolates were further investigated by whole-genome sequencing (WGS) using Illumina and Nanopore platforms. RESULTS Four isolates (3.8%) revealed imipenem MIC of ≥32 mg/L and positive results for modified carbapenem inactivation method and categorized as carbapenem resistant E. coli (CREC). Colistin, nitrofurantoin, fosfomycin, and tigecycline were the most active agents against all isolates (total susceptibility rate of 99, 99, 96 and 95.2% respectively) with the last three compounds being found as the most active antimicrobials for carbapenem resistant isolates (susceptibility rate of 100%). According to Multilocus Sequence Type (MLST) analysis the 4 CREC isolates belonged to ST167 (n = 2), ST361 (n = 1) and ST648 (n = 1). NDM was detected in all CREC isolates (NDM-1 (n = 1) and NMD-5 (n = 3)) among which one isolate co-harbored NDM-5 and OXA-181 carbapenemases. WGS further detected blaCTX-M-15, blaCMY-145, blaCMY-42 and blaTEM-1 (with different frequencies) among CREC isolates. Co-occurrence of NDM-type carbapenemase and 16S rRNA methyltransferase RmtB and RmtC was found in two isolates belonging to ST167 and ST648. A colistin-carbapenem resistant isolate which was mcr-negative, revealed various amino acid substitutions in PmrB, PmrD and PhoPQ proteins. CONCLUSION About 1.9% of E. coli isolates studied here were resistant to imipenem, colistin and/or amikacin which raises the concern about the outbreaks of difficult-to-treat infection by these emerging superbugs in the future.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Samaneh Barmudeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Narges Zeinalzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Virginia Batignani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Li G, Li X, Hu J, Pan Y, Ma Z, Zhang L, Xiong W, Zeng D, Zeng Z. Molecular epidemiology and transmission of rmtB-positive Escherichia coli among ducks and environment. Poult Sci 2023; 102:102579. [PMID: 36913759 PMCID: PMC10023955 DOI: 10.1016/j.psj.2023.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study aimed to investigate the transmission and molecular epidemiological characteristics of the rmtB gene in Escherichia coli (E. coli) strains isolated from duck farms in Guangdong Province of China from 2018 to 2021. A total of 164 (19.4%, 164/844) rmtB-positive E. coli strains were recovered from feces, viscera, and environment. We performed antibiotic susceptibility tests, pulsed-field gel electrophoresis (PFGE), and conjugation experiments. We obtained the genetic context of 46 rmtB-carrying E. coli isolates and constructed a phylogenetic tree via whole genome sequencing (WGS) and bioinformatic analysis. The isolation rate of rmtB-carrying E. coli isolates in duck farms increased yearly from 2018 to 2020 but decreased in 2021. All rmtB-harboring E. coli strains were multidrug resistant (MDR), and 99.4% of the strains were resistant to more than 10 drugs. Surprisingly, duck- and environment-associated strains similarly showed high MDR. Conjugation experiments revealed that the rmtB gene horizontally cocarried blaCTX-M and blaTEM gene dissemination via IncFII plasmids. Insertion sequences IS26, ISCR1, and ISCR3 were closely associated with the spread of rmtB-harboring E. coli isolates. WGS analysis indicated that ST48 was the most prevalent sequence type. The results of single nucleotide polymorphism (SNP) differences revealed potential clonal transmission between ducks and the environment. Based on One Health principles, we need to strictly use veterinary antibiotics, monitor the distribution of MDR strains, and evaluate the impact of plasmid-mediated rmtB gene on human, animal, and environmental health.
Collapse
Affiliation(s)
- Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Zhenbao Ma
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong Province, China
| | - Lingxuan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Isler B, Falconer C, Vatansever C, Özer B, Çınar G, Aslan AT, Forde B, Harris P, Şimşek F, Tülek N, Demirkaya H, Menekşe Ş, Akalin H, Balkan İİ, Aydın M, Tigen ET, Demir SK, Kapmaz M, Keske Ş, Doğan Ö, Arabacı Ç, Yağcı S, Hazırolan G, Bakır VO, Gönen M, Saltoğlu N, Azap A, Azap Ö, Akova M, Ergönül Ö, Can F, Paterson DL. High prevalence of ArmA-16S rRNA methyltransferase among aminoglycoside-resistant Klebsiella pneumoniae bloodstream isolates. J Med Microbiol 2022; 71. [PMID: 36748503 DOI: 10.1099/jmm.0.001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction. Aminoglycosides are used for the treatment of carbapenemase-producing Klebsiella pneumoniae (CPK) infections. 16S rRNA methyltransferases (RMTs) confer resistance to all aminoglycosides and are often cocarried with NDM.Hypothesis/Gap Statement. There is a dart of studies looking at the aminoglycoside resistance mechanisms for invasive CPK isolates, particularly in OXA-48 endemic settings.Aim. We aimed to determine the prevalence of RMTs and their association with beta lactamases and MLSTs amongst aminoglycoside-resistant CPK bloodstream isolates in an OXA-48 endemic setting.Methodology. CPK isolates (n=181), collected as part of a multicentre cohort study, were tested for amikacin, gentamicin and tobramycin susceptibility using custom-made sensititre plates (GN2XF, Thermo Fisher Scientific). All isolates were previously subjected to whole-genome sequencing. Carbapenemases, RMTs, MLSTs and plasmid incompatibility groups were detected on the assembled genomes.Results. Of the 181 isolates, 109(60 %) were resistant to all three aminoglycosides, and 96 of 109(88 %) aminoglycoside-resistant isolates carried an RMT (85 ArmA, 10 RmtC, 4 RmtF1; three isolates cocarried ArmA and RmtC). Main clonal types associated with ArmA were ST2096 (49/85, 58 %) and ST14 (24/85, 28 %), harbouring mainly OXA-232 and OXA-48 +NDM, respectively. RmtC was cocarried with NDM (5/10) on ST395, and NDM +OXA-48 or NDM +KPC (4/10) on ST14, ST15 and ST16. All RMT producers also carried CTX-M-15, and the majority cocarried SHV-106, TEM-150 and multiple other antibiotic resistance genes. The majority of the isolates harboured a combination of IncFIB, IncH and IncL/M type plasmids. Non-NDM producing isolates remained susceptible to ceftazidime-avibactam.Conclusion. Aminoglycoside resistance amongst CPK bloodstream isolates is extremely common and mainly driven by clonal spread of ArmA carried on ST2096 and ST14, associated with OXA-232 and OXA48 +NDM carriage, respectively.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Caitlin Falconer
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia
| | - Cansel Vatansever
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Berna Özer
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Güle Çınar
- Infectious Diseases and Clinical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Abdullah Tarık Aslan
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Brian Forde
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia
| | - Funda Şimşek
- Infectious Diseases and Clinical Microbiology, University of Health Sciences, Ministry of Health Prof Dr Cemil Taşçıoğlu City Hospital, Istanbul, Turkey
| | - Necla Tülek
- Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Hamiyet Demirkaya
- Infectious Diseases and Clinical Microbiology, Başkent University, Ankara Hospital, Ankara, Turkey
| | - Şirin Menekşe
- Infectious Diseases, Koşuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Halis Akalin
- Infectious Diseases and Clinical Microbiology, Uludağ University School of Medicine, Bursa, Turkey
| | - İlker İnanç Balkan
- Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpaşa, School of Medicine, Istanbul, Turkey
| | - Mehtap Aydın
- Infectious Diseases and Clinical Microbiology, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Elif Tükenmez Tigen
- Infectious Diseases and Clinical Microbiology, Marmara University, Pendik Training and Research Hospital, Istanbul, Turkey
| | - Safiye Koçulu Demir
- Infectious Diseases and Clinical Microbiology, Demiroglu Bilim University, Istanbul, Turkey
| | - Mahir Kapmaz
- Infectious Diseases and Clinical Microbiology, Koç University Hospital, Istanbul, Turkey
| | - Şiran Keske
- Infectious Diseases, VKV American Hospital, Istanbul, Turkey.,Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Özlem Doğan
- Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Çiğdem Arabacı
- Clinical Microbiology, University of Health Sciences, Ministry of Health Prof Dr Cemil Taşçıoğlu City Hospital, Istanbul, Turkey
| | - Serap Yağcı
- Clinical Microbiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Gülşen Hazırolan
- Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Veli Oğuzalp Bakır
- Graduate School of Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Mehmet Gönen
- Industrial Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Neşe Saltoğlu
- Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpaşa, School of Medicine, Istanbul, Turkey
| | - Alpay Azap
- Infectious Diseases and Clinical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Özlem Azap
- Infectious Diseases and Clinical Microbiology, Başkent University, Ankara Hospital, Ankara, Turkey
| | - Murat Akova
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Önder Ergönül
- Koç University İş Bank Centre for Infectious Diseases (KUISCID), Istanbul, Turkey.,Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Füsun Can
- Koç University İş Bank Centre for Infectious Diseases (KUISCID), Istanbul, Turkey.,Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,ADVANCE ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
9
|
Fernandez JE, Seth-Smith HMB, Nordmann P, Egli A, Endimiani A, Perreten V. Intra- and Interspecies Spread of a Novel Conjugative Multidrug Resistance IncC Plasmid Coharboring blaOXA-181 and armA in a Cystic Fibrosis Patient. Microbiol Spectr 2022; 10:e0312122. [PMID: 36154665 PMCID: PMC9603557 DOI: 10.1128/spectrum.03121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023] Open
Abstract
A novel multidrug resistance conjugative 177,859-bp IncC plasmid pJEF1-OXA-181 coharboring the carbapenemase-coding blaOXA181 and the aminoglycoside resistance 16S rRNA methyltransferase-coding armA genes was detected in two unrelated Escherichia coli gut isolates of ST196 and ST648, as well as two ST35 Klebsiella pneumoniae gut and sputum isolates of a cystic fibrosis patient. The armA gene was located within the antimicrobial resistance island ARI-A and the blaOXA181 gene, which was preceded by IS903 and ISEcp1Δ was inserted within the transfer genes region without affecting conjugation ability. Comparative plasmid analysis with other related IncC plasmids showed the presence of blaOXA181, as well as its integration site, are thus far unique for these types of plasmids. This study illustrates the potential of a promiscuous multidrug resistance plasmid to acquire antibiotic resistance genes and to disseminate in the gut of the same host. IMPORTANCE Colocalization of carbapenemases and aminoglycoside resistance 16S rRNA methylases on a multidrug resistance conjugative plasmid poses a serious threat to public health. Here, we describe the novel IncC plasmid pJEF1-OXA-181 cocarrying blaOXA-181 and armA as well as several other antimicrobial resistance genes (ARGs) in different Enterobacterales isolates of the sputum and gut microbiota of a cystic fibrosis patient. IncC plasmids are conjugative, promiscuous elements which can incorporate accessory antimicrobial resistance islands making them key players in ARGs spread. This plasmid was thus far unique among IncC plasmids to contain a blaOXA-181 which was integrated in the transfer gene region without affecting its conjugation ability. This study highlights that new plasmids may be introduced into a hospital through different species hosted in one single patient. It further emphasizes the need of continuous surveillance of multidrug-resistant bacteria in patients at risk to avoid spread of such plasmids in the health care system.
Collapse
Affiliation(s)
- Javier E. Fernandez
- Division of Molecular bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Helena M. B. Seth-Smith
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Patrice Nordmann
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Division of Molecular bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Characterization of Carbapenemase-Producing Klebsiella pneumoniae Isolates from Two Romanian Hospitals Co-Presenting Resistance and Heteroresistance to Colistin. Antibiotics (Basel) 2022; 11:antibiotics11091171. [PMID: 36139950 PMCID: PMC9495256 DOI: 10.3390/antibiotics11091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae is a notorious human pathogen involved in healthcare-associated infections. The worldwide expansion of infections induced by colistin-resistant and carbapenemase-producing Enterobacterales (CPE) isolates has been increasingly reported. This study aims to analyze the phenotypic and molecular profiles of 10 colistin-resistant (CR) isolates and 2 pairs of colistin-heteroresistant (ChR) (parental and the corresponding resistant mutants) isolates of K. pneumoniae CPE sourced from two hospitals. The phenotypes of strains in the selected collection had been previously characterized. Antimicrobial susceptibility testing was performed using a Vitek 2 Compact system (BioMérieux SA, Marcy l’Etoile, France), the disc diffusion method, and broth microdilution (BMD) for colistin. Whole-genome sequencing (WGS) did not uncover evidence of any mobile colistin resistance (mcr) genes, although the mgrB gene of seven isolates appeared to be disrupted by insertion sequences (ISKpn25 or ISKpn26). Possible deleterious missense mutations were found in phoP (L4F), phoQ (Q426L, L26Q, L224Q, Q317K), pmrB (R256G, P95L, T157P, V352E), and crrB (P151S) genes. The identified isolates belonged to the following clonal lineages: ST101 (n = 6), ST147 (n = 5), ST258 (n = 2), and ST307 (n = 1). All strains harbored IncF plasmids. OXA-48 producers carried IncL and IncR plasmids, while one blaNDM-1 genome was found to harbor IncC plasmids. Ceftazidime–avibactam remains a therapeutic option for KPC-2 and OXA-48 producers. Resistance to meropenem–vaborbactam has emerged in some blakPC-2-carrying isolates. Our study demonstrates that the results of WGS can provide essential evidence for the surveillance of antimicrobial resistance.
Collapse
|
11
|
Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S rRNA Methyltransferase. Antibiotics (Basel) 2022; 11:antibiotics11070906. [PMID: 35884160 PMCID: PMC9311965 DOI: 10.3390/antibiotics11070906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
With the wide spread of multidrug-resistant bacteria, a variety of aminoglycosides have been used in clinical practice as one of the effective options for antimicrobial combinations. However, in recent years, the emergence of high-level resistance against pan-aminoglycosides has worsened the status of antimicrobial resistance, so the production of 16S rRNA methyltransferase (16S-RMTase) should not be ignored as one of the most important resistance mechanisms. What is more, on account of transferable plasmids, the horizontal transfer of resistance genes between pathogens becomes easier and more widespread, which brings challenges to the treatment of infectious diseases and infection control of drug-resistant bacteria. In this review, we will make a presentation on the prevalence and genetic environment of 16S-RMTase encoding genes that lead to high-level resistance to aminoglycosides.
Collapse
|