1
|
Omrani M, Chiarelli RR, Acquaviva M, Bassani C, Dalla Costa G, Montini F, Preziosa P, Pagani L, Grassivaro F, Guerrieri S, Romeo M, Sangalli F, Colombo B, Moiola L, Zaffaroni M, Pietroboni A, Protti A, Puthenparampil M, Bergamaschi R, Comi G, Rocca MA, Martinelli V, Filippi M, Farina C. Machine learning-driven diagnosis of multiple sclerosis from whole blood transcriptomics. Brain Behav Immun 2024; 121:269-277. [PMID: 39097200 DOI: 10.1016/j.bbi.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Multiple sclerosis (MS) is a neurological disorder characterized by immune dysregulation. It begins with a first clinical manifestation, a clinically isolated syndrome (CIS), which evolves to definite MS in case of further clinical and/or neuroradiological episodes. Here we evaluated the diagnostic value of transcriptional alterations in MS and CIS blood by machine learning (ML). Deep sequencing of more than 200 blood RNA samples comprising CIS, MS and healthy subjects, generated transcriptomes that were analyzed by the binary classification workflow to distinguish MS from healthy subjects and the Time-To-Event pipeline to predict CIS conversion to MS along time. To identify optimal classifiers, we performed algorithm benchmarking by nested cross-validation with the train set in both pipelines and then tested models generated with the train set on an independent dataset for final validation. The binary classification model identified a blood transcriptional signature classifying definite MS from healthy subjects with 97% accuracy, indicating that MS is associated with a clear predictive transcriptional signature in blood cells. When analyzing CIS data with ML survival models, prediction power of CIS conversion to MS was about 72% when using paraclinical data and 74.3% when using blood transcriptomes, indicating that blood-based classifiers obtained at the first clinical event can efficiently predict risk of developing MS. Coupling blood transcriptomics with ML approaches enables retrieval of predictive signatures of CIS conversion and MS state, thus introducing early non-invasive approaches to MS diagnosis.
Collapse
Affiliation(s)
- Maryam Omrani
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosaria Rita Chiarelli
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Acquaviva
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Bassani
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Montini
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Francesca Grassivaro
- Dipartimento di Neuroscienze, Azienda Ospedale - Università di Padova, Padova, Italy
| | - Simone Guerrieri
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marzia Romeo
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sangalli
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Zaffaroni
- Centro Sclerosi Multipla, ASST della Valle Olona, Ospedale di Gallarate, Gallarate, Italy
| | - Anna Pietroboni
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marco Puthenparampil
- Dipartimento di Neuroscienze, Azienda Ospedale - Università di Padova, Padova, Italy
| | | | - Giancarlo Comi
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Adamová LM, Slezáková D, Hric I, Nechalová L, Berisha G, Olej P, Chren M, Chlapcová A, Penesová A, Minár M, Bielik V. Impact of dance classes on motor and cognitive functions and gut microbiota composition in multiple sclerosis patients: Randomized controlled trial. Eur J Sport Sci 2024; 24:1186-1196. [PMID: 38967986 PMCID: PMC11295098 DOI: 10.1002/ejsc.12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Evidence suggests that multiple sclerosis (MS) induces a decline in motor and cognitive function and provokes a shift in gut microbiome composition in patients. Therefore, the aim of the study was to explore the effect of dance classes on the motor and cognitive functions and gut microbiota composition of MS patients. In this randomized controlled trial, 36 patients were randomly divided into two groups: the experimental group (n = 18) and the passive control group (n = 18). Supervised rock and roll and sports dance classes were performed for 12 weeks at a frequency of two times a week. Before and after the intervention, fecal samples were taken and the motor and cognitive function assessments were completed. Fecal microbiota were categorized using primers targeting the V3-V4 region of 16S rDNA. Our results revealed significant differences in mobility performance (T25-FWT), attention and working memory (TMT B), and finger dexterity (9-HPT) within the experimental group. Furthermore, we reported favorable shifts in gut microbial communities (an increase in Blautia stercoris and a decrease in Ruminococcus torques) within the experimental group. In conclusion, our randomized control trial on the effects of 12-week dance classes in MS patients found significant improvements in motor and cognitive functions, with further moderate influence on gut microbiota composition.
Collapse
Affiliation(s)
- Louise Mária Adamová
- Second Department of NeurologyFaculty of MedicineComenius UniversityUniversity Hospital in BratislavaBratislavaSlovakia
| | - Darina Slezáková
- Second Department of NeurologyFaculty of MedicineComenius UniversityUniversity Hospital in BratislavaBratislavaSlovakia
| | - Ivan Hric
- Biomedical Research CenterInstitute of Clinical and Translational ResearchSlovak Academy of SciencesBratislavaSlovakia
- Department of Molecular BiologyFaculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
| | - Libuša Nechalová
- Biomedical Research CenterInstitute of Clinical and Translational ResearchSlovak Academy of SciencesBratislavaSlovakia
- Department of Biological and Medical ScienceFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| | - Genc Berisha
- Department of Biological and Medical ScienceFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| | - Peter Olej
- Department of GymnasticsFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| | - Matej Chren
- Department of GymnasticsFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| | - Adela Chlapcová
- Department of GymnasticsFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| | - Adela Penesová
- Biomedical Research CenterInstitute of Clinical and Translational ResearchSlovak Academy of SciencesBratislavaSlovakia
- Department of Biological and Medical ScienceFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| | - Michal Minár
- Second Department of NeurologyFaculty of MedicineComenius UniversityUniversity Hospital in BratislavaBratislavaSlovakia
| | - Viktor Bielik
- Department of Biological and Medical ScienceFaculty of Physical Education and SportComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
3
|
Boussamet L, Montassier E, Mathé C, Garcia A, Morille J, Shah S, Dugast E, Wiertlewski S, Gourdel M, Bang C, Stürner KH, Masson D, Nicot AB, Vince N, Laplaud DA, Feinstein DL, Berthelot L. Investigating the metabolite signature of an altered oral microbiota as a discriminant factor for multiple sclerosis: a pilot study. Sci Rep 2024; 14:7786. [PMID: 38565581 PMCID: PMC10987558 DOI: 10.1038/s41598-024-57949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.
Collapse
Affiliation(s)
- Léo Boussamet
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emmanuel Montassier
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Emergency Department, Nantes Hospital, Nantes, France
| | - Camille Mathé
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Alexandra Garcia
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Jérémy Morille
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sita Shah
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emilie Dugast
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sandrine Wiertlewski
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Damien Masson
- Clinical Biochemistry Department, Nantes Hospital, Nantes, France
| | - Arnaud B Nicot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Nicolas Vince
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - David-Axel Laplaud
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | - Douglas L Feinstein
- Jesse Brown VA Medical Center, 835 South Wolcott Ave, MC513, E720, Chicago, IL, 60612, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.
| | - Laureline Berthelot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France.
| |
Collapse
|
4
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
5
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
6
|
Buga AM, Padureanu V, Riza AL, Oancea CN, Albu CV, Nica AD. The Gut-Brain Axis as a Therapeutic Target in Multiple Sclerosis. Cells 2023; 12:1872. [PMID: 37508537 PMCID: PMC10378521 DOI: 10.3390/cells12141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The CNS is very susceptible to oxidative stress; the gut microbiota plays an important role as a trigger of oxidative damage that promotes mitochondrial dysfunction, neuroinflammation, and neurodegeneration. In the current review, we discuss recent findings on oxidative-stress-related inflammation mediated by the gut-brain axis in multiple sclerosis (MS). Growing evidence suggests targeting gut microbiota can be a promising strategy for MS management. Intricate interaction between multiple factors leads to increased intra- and inter-individual heterogeneity, frequently painting a different picture in vivo from that obtained under controlled conditions. Following an evidence-based approach, all proposed interventions should be validated in clinical trials with cohorts large enough to reach significance. Our review summarizes existing clinical trials focused on identifying suitable interventions, the suitable combinations, and appropriate timings to target microbiota-related oxidative stress. Most studies assessed relapsing-remitting MS (RRMS); only a few studies with very limited cohorts were carried out in other MS stages (e.g., secondary progressive MS-SPMS). Future trials must consider an extended time frame, perhaps starting with the perinatal period and lasting until the young adult period, aiming to capture as many complex intersystem interactions as possible.
Collapse
Affiliation(s)
- Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Center for Medical Genetics Dolj, Emergency County Hospital Craiova, 200638 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru Dan Nica
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
7
|
The Lung Microbiome: A New Frontier for Lung and Brain Disease. Int J Mol Sci 2023; 24:ijms24032170. [PMID: 36768494 PMCID: PMC9916971 DOI: 10.3390/ijms24032170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Due to the limitations of culture techniques, the lung in a healthy state is traditionally considered to be a sterile organ. With the development of non-culture-dependent techniques, the presence of low-biomass microbiomes in the lungs has been identified. The species of the lung microbiome are similar to those of the oral microbiome, suggesting that the microbiome is derived passively within the lungs from the oral cavity via micro-aspiration. Elimination, immigration, and relative growth within its communities all contribute to the composition of the lung microbiome. The lung microbiome is reportedly altered in many lung diseases that have not traditionally been considered infectious or microbial, and potential pathways of microbe-host crosstalk are emerging. Recent studies have shown that the lung microbiome also plays an important role in brain autoimmunity. There is a close relationship between the lungs and the brain, which can be called the lung-brain axis. However, the problem now is that it is not well understood how the lung microbiota plays a role in the disease-specifically, whether there is a causal connection between disease and the lung microbiome. The lung microbiome includes bacteria, archaea, fungi, protozoa, and viruses. However, fungi and viruses have not been fully studied compared to bacteria in the lungs. In this review, we mainly discuss the role of the lung microbiome in chronic lung diseases and, in particular, we summarize the recent progress of the lung microbiome in multiple sclerosis, as well as the lung-brain axis.
Collapse
|
8
|
Omarova MA, Rogovskii VS, Sadekov TS, Sadekova GI, Zhilenkova OG, Boyko AN. [Microbiota markers level in the blood and cerebrospinal fluid of patients with different types of multiple sclerosis and radiologically isolated syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:96-102. [PMID: 37560841 DOI: 10.17116/jnevro202312307296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To assess the level of microbiota markers in the blood and cerebrospinal fluid (CSF) of patients with different types of multiple sclerosis (MS), people with radiologically isolated syndrome (RIS) and control subjects. MATERIAL AND METHODS We used gas chromatography-mass spectrometry (GC-MS) to evaluate the levels of microbiota markers in 69 patients with different types of MS (27 patients in the acute stage, 35 patients with MS in remission, 7 patients with primary-progressive MS), 10 people with RIS, and 47 control subjects (different diseases of the nervous system of a non-autoimmune or inflammatory nature). RESULTS We showed a statistically significant increase in the content of various microbiota markers in the CSF of patients with MS compared with the control group. We found no change in the content of these markers in blood of patients with MS. This suggests a change of markers of microbial load at the level of the central nervous system, but not at the level of the whole organism. The greatest number of statistically significant differences with the control group was found in the content of markers in CSF of patients with MS in remission. In the acute stage, on the contrary, we found no statistically significant differences compared to the control group. In particular, in CSF of patients with MS in remission, a statistically significant increase in the content of bacterial plasmalogen (4.5 times), and increase in the level of microbial markers specific to Peptostreptococcus anaerobius, Pseudomonas aeruginosa, Eubacterium, Bifidobacterium, Butirivibrio, Moraxella, Acinetobacter, Propionibacterium acnes, as well as an increase of markers of the Epstein-Barr virus were found. In addition, there was an increase of campesterol, the likely source of which is campesterol-producing microfungi. In the CSF of subjects with RIS there were a statistically significant increase in the level of markers of the Epstein-Barr virus, Propionibacterium acnes, as well as Pseudomonas, Moraxella, and Acinetobacter. CONCLUSION An association of MS with polymicrobial infection is possible. It is also likely that there is a certain pattern of increase of microbiota markers in the CSF of patients with MS, but not in blood.
Collapse
Affiliation(s)
- M A Omarova
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V S Rogovskii
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - T Sh Sadekov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - G I Sadekova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O G Zhilenkova
- Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - A N Boyko
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
10
|
Nigam M, Panwar AS, Singh RK. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:961569. [PMID: 36212607 PMCID: PMC9535080 DOI: 10.3389/fmedt.2022.961569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 01/10/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been proved to be an effective treatment for gastrointestinal disorders caused due to microbial disbalance. Nowadays, this approach is being used to treat extragastrointestinal conditions like metabolic and neurological disorders, which are considered to have their provenance in microbial dysbiosis in the intestine. Even though case studies and clinical trials have demonstrated the potential of FMT in treating a variety of ailments, safety and ethical concerns must be answered before the technique is widely used to the community's overall benefit. From this perspective, it is not unexpected that techniques for altering gut microbiota may represent a form of medication whose potential has not yet been thoroughly addressed. This review intends to gather data on recent developments in FMT and its safety, constraints, and ethical considerations.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, India
- Correspondence: Manisha Nigam Rahul Kunwar Singh
| |
Collapse
|
11
|
Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
|
12
|
Gut Microbes and Neuropathology: Is There a Causal Nexus? Pathogens 2022; 11:pathogens11070796. [PMID: 35890040 PMCID: PMC9319901 DOI: 10.3390/pathogens11070796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a virtual organ which produces a myriad of molecules that the brain and other organs require. Humans and microbes are in a symbiotic relationship, we feed the microbes, and in turn, they provide us with essential molecules. Bacteroidetes and Firmicutes phyla account for around 80% of the total human gut microbiota, and approximately 1000 species of bacteria have been identified in the human gut. In adults, the main factors influencing microbiota structure are diet, exercise, stress, disease and medications. In this narrative review, we explore the involvement of the gut microbiota in Parkinson’s disease, Alzheimer’s disease, multiple sclerosis and autism, as these are such high-prevalence disorders. We focus on preclinical studies that increase the understanding of disease pathophysiology. We examine the potential for targeting the gut microbiota in the development of novel therapies and the limitations of the currently published clinical studies. We conclude that while the field shows enormous promise, further large-scale studies are required if a causal link between these disorders and gut microbes is to be definitively established.
Collapse
|