1
|
Elmi A, Correa F, Ventrella D, Scozzoli M, Vannetti NI, Govoni N, Truzzi E, Belperio S, Trevisi P, Bacci ML, Nannoni E. Can environmental nebulization of lavender essential oil (L. angustifolia) improve welfare and modulate nasal microbiota of growing pigs? Res Vet Sci 2024; 171:105251. [PMID: 38554612 DOI: 10.1016/j.rvsc.2024.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The use of phytoextracts has been proposed as a method to improve animal welfare, also in pigs, by reducing stress and anxiety and improving performances. Lavandula angustifolia (Miller) essential oil (LaEO) is an interesting calming phytoextract that could be administered by inhalation for prolonged periods of time to help pigs coping with on-farm conditions. The aim of this study was to assess the effects of daily inhalation of vaporized LaEO on pigs' welfare and health indicators, and nasal microbiota, trying to understand whether this phytoextract represents a feasible tool to improve animal welfare under intensive farming conditions. Eighty-four crossbred barrows were randomly divided into 3 experimental groups: control (C); lavender (L): 3 vaporization sessions of 10 min each of a custom made 1% solution of LaEO; sham (S): same vaporization sessions of L group but only using the solution vehicle. Experimental readouts included growth parameters, behavioural traits, tail and skin lesions, hair steroids and nasal microbiota. L group animals did not show altered growth performance and seemed calmer (increased recumbency time), with decreased amount of skin lesions also associated with lower severity class for tail lesions. They also showed decreased CORT/DHEA ratio, potentially suggesting a beneficial effect of LaEO. Inhalation of LaEO significantly affected the nasal pig microbiome by reducing its diversity. Overall, the study suggests how inhalation of Lavender essential oil may be capable of improving welfare in growing pigs, yet it is pivotal to consider the microbial modulatory capabilities of essential oils before exploiting them on larger scale.
Collapse
Affiliation(s)
- Alberto Elmi
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy; Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.
| | - Maurizio Scozzoli
- SIROE - Italian Society for Research on Essential Oils (Società Italiana per la Ricerca sugli Oli Essenziali), Viale Regina Elena, 299, Roma 00161, Italy
| | - Niccolò Ian Vannetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Nadia Govoni
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Belperio
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Eleonora Nannoni
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Liu HY, Zhu C, Zhu M, Yuan L, Li S, Gu F, Hu P, Chen S, Cai D. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. STRESS BIOLOGY 2024; 4:1. [PMID: 38163818 PMCID: PMC10758383 DOI: 10.1007/s44154-023-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of "The Hygiene Hypothesis" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Troisio I, Bertocchi M, Ventrella D, Scozzoli M, Di Vito M, Truzzi E, Benvenuti S, Mattarelli P, Bacci ML, Elmi A. Short- and long-term effects of essential oils on swine spermatozoa during liquid phase refrigeration. Sci Rep 2024; 14:285. [PMID: 38168599 PMCID: PMC10762118 DOI: 10.1038/s41598-023-51030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
The application of essential oils as potential alternatives to antibiotics in swine semen storage is promising, due to their antioxidant and antibacterial properties. However, detrimental effects on spermatozoa should be clarified first. The aim of this study was to evaluate 9 essential oils (EOs; Satureja montana, Pelargonium graveolens, Cymbopogon nardus, Melaleuca leucadendron, Eucaliptus globulus, Citrus limon, Lavandula angustifolia, Lavandula hybrida, Mentha piperita) and a blend (GL mix) on key morpho-functional parameters of swine spermatozoa. Test compounds were firstly chemo-characterized and experimental doses were prepared by suspending a fixed number of spermatozoa with 3 different concentrations (0.1, 0.5, 1 mg/mL) of EOs. Experimental doses were stored at 16 °C and sampled after 3 and 120 h for analysis. Overall, S. montana, P. graveolens and L. angustifolia EOs induced the strongest alterations, with C. nardus and E. globulus EOs being the best tolerated. Swine spermatozoa represent a good preliminary testing platform to screen toxicity and its different patterns. The comprehensive overview on the potential mechanisms of action of some of the most common EOs, despite of the direct aim of the study being swine reproduction, may be exploited in other fields of research within both veterinary and human medicine.
Collapse
Affiliation(s)
- Ilaria Troisio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Martina Bertocchi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy.
| | - Maurizio Scozzoli
- Italian Society for Research on Essential Oils (Società Italiana per la Ricerca sugli Oli Essenziali-SIROE), Rome, RM, Italy
| | - Maura Di Vito
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, RM, Italy
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, MO, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, MO, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, BO, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
4
|
Reguera-Gomez M, Dores MR, Martinez LR. Innovative and potential treatments for fungal central nervous system infections. Curr Opin Microbiol 2023; 76:102397. [PMID: 37898052 DOI: 10.1016/j.mib.2023.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
Fungal infections of the central nervous system (FI-CNS) are a problematic and important medical challenge considering that those most affected are immunocompromised. Individuals with systemic cryptococcosis (67-84%), candidiasis (3-64%), blastomycosis (40%), coccidioidomycosis (25%), histoplasmosis (5-20%), mucormycosis (12%), and aspergillosis (4-6%) are highly susceptible to develop CNS involvement, which often results in high mortality (15-100%) depending on the mycosis and the affected immunosuppressed population. Current antifungal drugs are limited, prone to resistance, present host toxicity, and show reduced brain penetration, making FI-CNS very difficult to treat. Given these limitations and the rise in FI-CNS, there is a need for innovative strategies for therapeutic development and treatments to manage FI-CNS in at-risk populations. Here, we discuss standards of care, antifungal drug candidates, and novel molecular targets in the blood-brain barrier, which is a protective structure that regulates movement of particles in and out of the brain, to prevent and combat FI-CNS.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Michael R Dores
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Center for Immunology and Transplantation, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
James C, James SJ, Onarinde BA, Dixon RA, Williams N. A Critical Review of AMR Risks Arising as a Consequence of Using Biocides and Certain Metals in Food Animal Production. Antibiotics (Basel) 2023; 12:1569. [PMID: 37998771 PMCID: PMC10668721 DOI: 10.3390/antibiotics12111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
The focus of this review was to assess what evidence exists on whether, and to what extent, the use of biocides (disinfectants and sanitizers) and certain metals (used in feed and other uses) in animal production (both land and aquatic) leads to the development and spread of AMR within the food chain. A comprehensive literature search identified 3434 publications, which after screening were reduced to 154 relevant publications from which some data were extracted to address the focus of the review. The review has shown that there is some evidence that biocides and metals used in food animal production may have an impact on the development of AMR. There is clear evidence that metals used in food animal production will persist, accumulate, and may impact on the development of AMR in primary animal and food production environments for many years. There is less evidence on the persistence and impact of biocides. There is also particularly little, if any, data on the impact of biocides/metal use in aquaculture on AMR. Although it is recognized that AMR from food animal production is a risk to human health there is not sufficient evidence to undertake an assessment of the impact of biocide or metal use on this risk and further focused in-field studies are needed provide the evidence required.
Collapse
Affiliation(s)
- Christian James
- Formerly Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK;
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Stephen J. James
- Formerly Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK;
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Bukola A. Onarinde
- National Centre for Food Manufacturing (NCFM), University of Lincoln, South Lincolnshire Food Enterprise Zone, Peppermint Way, Holbeach PE12 7FJ, UK;
| | - Ronald A. Dixon
- School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK;
| |
Collapse
|
6
|
Galgano M, Pellegrini F, Mrenoshki D, Capozza P, Omar AH, Salvaggiulo A, Camero M, Lanave G, Tempesta M, Pratelli A, Buonavoglia A. Assessing Contact Time and Concentration of Thymus vulgaris Essential Oil on Antibacterial Efficacy In Vitro. Antibiotics (Basel) 2023; 12:1129. [PMID: 37508225 PMCID: PMC10376642 DOI: 10.3390/antibiotics12071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The overuse and misuse of antibiotics can pose the risk of spreading mutant strains that show antimicrobial resistance (AMR), with negative impacts on the management of bacterial infections and economic implications for healthcare systems. The research and development of natural antibacterial agents could be a priority in the next years to improve a number of effective antibacterial molecules and to reduce the AMR phenomenon and its development. The present study identified the most effective concentration and contact time of Thymus vulgaris L. essential oil (TEO) to obtain bactericidal effects in vitro against different Gram-positive and Gram-negative bacterial strains. Six clinically isolated (wild types) bacterial strains, (Citrobacter freundii, Enterococcus feciorum, Proteus mirabilis, Acinetobacter cioffi, Pseudomonas putrefaciens and Klebsiella pneumoniae) and two ATCCs (Staphylococcus aureus and Streptococcus mutans) were tested after 1 min, 3 min and 5 min of contact with TEO. The preliminary results on S. aureus after 24 h of incubation revealed a TEO concentration of 9.28 mg/mL (w/v) that completely inhibited bacteria growth, keeping cell viability. The total suppression of bacterial growth at all tested contact times was observed for all tested bacterial strains, and the results were confirmed after 48 h of incubation. Bacterial growth suppression was confirmed even with the presence of organic components. These preliminary results showed the in vitro antimicrobial efficacy of TEO against different Gram-positive and Gram-negative bacterial strains. Future studies are necessary to confirm the reproducibility of these results even on other strains and to define the exact molecular mechanisms of EOs in order to consider TEO as a valid alternative to classic antibiotic therapies and subsequently to reduce the occurrence of AMR.
Collapse
Affiliation(s)
- Michela Galgano
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Daniela Mrenoshki
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Ahmed Hassan Omar
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Anna Salvaggiulo
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| |
Collapse
|
7
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
8
|
Di Vito M, Garzoli S, Rosato R, Mariotti M, Gervasoni J, Santucci L, Ovidi E, Cacaci M, Lombarini G, Torelli R, Urbani A, Sanguinetti M, Bugli F. A New Potential Resource in the Fight against Candida auris: the Cinnamomum zeylanicum Essential Oil in Synergy with Antifungal Drug. Microbiol Spectr 2023; 11:e0438522. [PMID: 36975835 PMCID: PMC10101117 DOI: 10.1128/spectrum.04385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Candida auris is a multidrug-resistant fungus known to be a global public health problem. The skin-based transmission, together with the marked resistance to drugs, resulted in its rapid spread to all continents. The aim of this study was to identify an essential oil (EO) active in the fight against C. auris. A total of 15 EOs were tested against 10 clinical strains of C. auris. Cinnamomum zeylanicum EO (CZ-EO) was the most effective (MIC90 and MFC90 equal to 0.06% vol/vol). Three fractions obtained from CZ-EO, and the cinnamaldehyde (CIN), the major chemical compound, were tested to identify the principal compound effectives against C. auris. All CIN-containing samples showed anti-fungal activity. To study the synergy with fluconazole, CZ-EO, its active fraction (FR2), and CIN were tested in checkerboard tests. Results show that CZ-EO and FR2, but not CIN, synergize with fluconazole. Furthermore, only the copresence of CZ-EO or FR2 synergize with fluconazole at therapeutic concentrations of the drug (0.45 ± 0.32 μg/mL and 0.64 ± 0.67 μg/mL, respectively), while CIN only shows additive activity. In vivo studies conducted on Galleria mellonella larvae show the absence of toxicity of CZ-EO up to concentrations of 16% vol/vol, and the ability of CZ-EO to reactivate the efficacy of fluconazole when formulated at synergic concentrations. Finally, biochemical tests were made to study the mechanism of action of CZ-EO. These studies show that in the presence of both fluconazole and CZ-EO, the activity of fungal ATPases decreases and, at the same time, the amount of intracellular drug increases. IMPORTANCE This study highlights how small doses of CZ-EO are able to inhibit the secretion of fluconazole and promote its accumulation in the fungal cell. In this manner, the drug is able to exert its pharmacological effects bypassing the resistance of the yeast. If further studies will confirm this synergy, it will be possible to develop new therapeutic formulations active in the fight against C. auris resistances.
Collapse
Affiliation(s)
- M. Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - S. Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Rome, Italy
| | - R. Rosato
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M. Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - J. Gervasoni
- UOC Chimica, Biochimica e Biologia Molecolare Clinica, Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - L. Santucci
- UOC Chimica, Biochimica e Biologia Molecolare Clinica, Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E. Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems DIBAF—University of Tuscia, Viterbo, Italy
| | - M. Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G. Lombarini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A. Urbani
- UOC Chimica, Biochimica e Biologia Molecolare Clinica, Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M. Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - F. Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
9
|
Paiano RB, de Sousa RLM, Bonilla J, Moreno LZ, de Souza EDF, Baruselli PS, Moreno AM. In vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis. Theriogenology 2023; 196:106-111. [PMID: 36413866 DOI: 10.1016/j.theriogenology.2022.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/11/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Clinical endometritis causes serious economic losses in dairy farms, mainly due to its negative health impact on fertility and milk production, as well as the additional costs of medicines used to treat the affected animals. The therapy for uterine diseases is principally performed with antibiotic treatment; however, its indiscriminate use in dairy herds can favor the increase in the resistance of pathogenic bacteria, leading to treatment failures. In this regard, the use of unconventional treatment may be a good option to reduce the use of antimicrobials in milk production. The objective of the present study was to evaluate the antibacterial activity of cinnamon, oregano, and thyme essential oils, and their combinations, against bovine uterine pathogens. The antibacterial activities of these essential oils were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), and Fractional Inhibitory Concentration (FIC) indices against Escherichia coli and Trueperella pyogenes, which were isolated from dairy cows with clinical endometritis. Among the essential oils evaluated, the lowest MIC and MBC values observed were obtained with cinnamon essential oil alone. The association among essential oils showed different kinds of interactions, and in some situations, antagonism was observed. This study demonstrated a promising antimicrobial activity of cinnamon's essential oil, indicating that it has excellent potential to be explored as a possible alternative in the treatment of clinical endometritis in dairy cows.
Collapse
Affiliation(s)
- Renan B Paiano
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil; Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ricardo L M de Sousa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, 225 Duque de Caxias, Pirassununga, SP, 13635-900, Brazil
| | - Jeannine Bonilla
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, 225 Duque de Caxias, Pirassununga, SP, 13635-900, Brazil; Department of Food Science, University of Guelph, Guelph, ON, N1G2 W1, Canada
| | - Luisa Z Moreno
- Departamento de Medicina Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil
| | | | - Pietro S Baruselli
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil
| | - Andrea M Moreno
- Departamento de Medicina Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil
| |
Collapse
|
10
|
Sharma H, Fidan H, Özogul F, Rocha JM. Recent development in the preservation effect of lactic acid bacteria and essential oils on chicken and seafood products. Front Microbiol 2022; 13:1092248. [PMID: 36620022 PMCID: PMC9816663 DOI: 10.3389/fmicb.2022.1092248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chicken and seafood are highly perishable owing to the higher moisture and unsaturated fatty acids content which make them more prone to oxidation and microbial growth. In order to preserve the nutritional quality and extend the shelf-life of such products, consumers now prefer chemical-free alternatives, such as lactic acid bacteria (LAB) and essential oils (EOs), which exert a bio-preservative effect as antimicrobial and antioxidant compounds. This review will provide in-depth information about the properties and main mechanisms of oxidation and microbial spoilage in chicken and seafood. Furthermore, the basic chemistry and mode of action of LAB and EOs will be discussed to shed light on their successful application in chicken and seafood products. Metabolites of LAB and EOs, either alone or in combination, inhibit or retard lipid oxidation and microbial growth by virtue of their principal constituents and bioactive compounds including phenolic compounds and organic acids (lactic acid, propionic acid, and acetic acid) and others. Therefore, the application of LAB and EOs is widely recognized to extend the shelf-life of chicken and seafood products naturally without altering their functional and physicochemical properties. However, the incorporation of any of these agents requires the optimization steps necessary to avoid undesirable sensory changes. In addition, toxicity risks associated with EOs also demand the regularization of an optimum dose for their inclusion in the products.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hafize Fidan
- Department of Tourism and Culinary Management, University of Food Technologies, Plovdiv, Bulgaria
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye
| | - João Miguel Rocha
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal,ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal,*Correspondence: João Miguel Rocha,
| |
Collapse
|
11
|
Ghavam M, Bacchetta G, Castangia I, Manca ML. Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran. Sci Rep 2022; 12:17044. [PMID: 36220839 PMCID: PMC9553974 DOI: 10.1038/s41598-022-21509-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
In this study the essential oils obtained from four different plant species belonging to the Lamiaceae family were extracted by means of hydrodistillation and their composition and antimicrobial activity were evaluated. About 66 components were identified by using gas chromatography-mass spectrometry (GC-MS), and among all, thymol (67.7%), oleic acid (0.5-62.1%), (-)-caryophyllene oxide (0.4-24.8%), α-pinene (1.1-19.4%), 1,8-cineole (0.2-15.4%), palmitic acid (0.32-13.28%), ( +)spathulenol (11.16%), and germacrene D (0.3-10.3%) were the most abundant in all the species tested (i.e. Thymus daenensis, Nepeta sessilifolia, Hymenocrater incanus, and Stachys inflata). In particular, only the composition of essential oils from H. incanus was completely detected (99.13%), while that of the others was only partially detected. Oxygenated monoterpenes (75.57%) were the main compounds of essential oil from T. daenensis; sesquiterpenes hydrocarbons (26.88%) were the most abundant in S. inflata; oxygenated sesquiterpenes (41.22%) were mainly detected in H. incanus essential oil, while the essential oil from N. sessilifolia was mainly composed of non-terpene and fatty acids (77.18%). Due to their slightly different composition, also the antibacterial activity was affected by the essential oil tested. Indeed, the highest antibacterial and antifungal activities were obtained with the essential oil from T. daenensis by means of the inhibition halo (39 ± 1 and 25 ± 0 mm) against Gram-positive strains such as Staphylococcus aureus and Aspergillus brasiliensis. The minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) of the essential oils obtained from the four species varied from 16 to 2000 μg/mL and were strictly affected by the type of microorganism tested. As an example, the essential oils from H. incanus and S. inflata were the most effective against the Gram-negative bacterium Pseudomonas aeruginosa (MIC 16 and 63 μg/ml, respectively), which is considered one of the most resistant bacterial strain. Therefore, the essential oils obtained from the four species contained a suitable phytocomplexes with potential applications in different commercial area such as agriculture, food, pharmaceutical and cosmetic industries. Moreover, these essential oils can be considered a valuable natural alternative to some synthetic antibiotics, thanks to their ability to control the growth of different bacteria and fungi.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Truzzi E, Durante C, Bertelli D, Catellani B, Pellacani S, Benvenuti S. Rapid Classification and Recognition Method of the Species and Chemotypes of Essential Oils by ATR-FTIR Spectroscopy Coupled with Chemometrics. Molecules 2022; 27:5618. [PMID: 36080384 PMCID: PMC9458032 DOI: 10.3390/molecules27175618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In the present work, the applicability of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, coupled with chemometric tools in recognizing essential oils (EOs) for routine control, was evaluated. EOs belonging to Mentha, Cymbopogon, and Lavandula families and to S. rosmarinus and T. vulgaris species were analyzed, and the performance of several untargeted approaches, based on the synergistic combination of ATR-FTIR and Partial Least Squares Discriminant Analysis (PLS-DA), was tested to classify the species and chemotypes. Different spectra pre-processing methods were employed, and the robustness of the built models was tested by means of a Receiver Operating Characteristic (ROC) curve and random permutations test. The application of these approaches revealed fruitful results in terms of sensitivity and specificity, highlighting the potentiality of ATR-FTIR and chemometrics techniques to be used as a sensitive, cost-effective, and rapid tool to differentiate EO samples according to their species and chemotype.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Benedetta Catellani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Samuele Pellacani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|