1
|
Kommerein N, Vierengel N, Groß J, Opatz T, Al-Nawas B, Müller-Heupt LK. Correction: Kommerein et al. Antiplanktonic and Antibiofilm Activity of Rheum palmatum Against Streptococcus oralis and Porphyromonas gingivalis. Microorganisms 2022, 10, 965. Microorganisms 2024; 12:2141. [PMID: 39597770 PMCID: PMC11596548 DOI: 10.3390/microorganisms12112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Nina Vierengel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Lena Katharina Müller-Heupt
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| |
Collapse
|
2
|
Saini RS, Vaddamanu SK, Dermawan D, Bavabeedu SS, Khudaverdyan M, Mosaddad SA, Heboyan A. In Silico Docking of Medicinal Herbs Against P. gingivalis for Chronic Periodontitis Intervention. Int Dent J 2024:S0020-6539(24)00187-4. [PMID: 39127518 DOI: 10.1016/j.identj.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE This study aimed to explore the therapeutic potential of medicinal herbs for chronic periodontitis by examining the molecular interactions between specific herbal compounds and the heme-binding protein of Porphyromonas gingivalis, a key pathogen involved in the disease. METHODS The crystal structure of heme-binding protein was obtained from the Protein Data Bank. Herbal compounds were identified through an extensive literature review. Molecular docking simulations were performed to predict binding affinities, followed by Absorption, Distribution, Metabolism, and Excretion (ADME) parameter prediction. Drug-likeness was assessed based on Lipinski's Rule of Five, and pharmacophore modeling was conducted to identify key molecular interactions. RESULTS The molecular docking simulations revealed that chelidonine, rotenone, and myricetin exhibited significant binding affinities to the heme-binding protein, with docking scores of -6.5 kcal/mol, -6.4 kcal/mol, and -6.1 kcal/mol, respectively. These compounds formed stable interactions with key amino acid residues within the binding pocket. ADME analysis indicated that all 3 compounds had favourable pharmacokinetic properties, with no violations of Lipinski's rules and minimal predicted toxicity. Pharmacophore modeling further elucidated the interaction profiles, highlighting specific hydrogen bonds and hydrophobic interactions critical for binding efficacy. CONCLUSIONS Chelidonine, rotenone, and myricetin emerged as promising therapeutic candidates for chronic periodontitis due to their strong binding affinities, favorable ADME profiles, and lack of significant toxicity. The detailed pharmacophore modeling provided insights into the molecular mechanisms underpinning their inhibitory effects on the heme-binding protein of P. gingivalis. These findings suggest that these compounds have the potential for further development as effective treatments for chronic periodontitis. Future research should focus on in vitro and in vivo validation of these findings to confirm the efficacy and safety of these compounds in biological systems.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Margarita Khudaverdyan
- The Center for Excellence in Dental Education, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia; Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yang X, Dai L, Yan F, Ma Y, Guo X, Jenis J, Wang Y, Zhang J, Miao X, Shang X. The phytochemistry and pharmacology of three Rheum species: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155772. [PMID: 38852474 DOI: 10.1016/j.phymed.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Rheum palmatum, R. tanguticum, and R. officinale, integral species of the genus Rheum, are widely used across global temperate and subtropical regions. These species are incorporated in functional foods, medicines, and cosmetics, recognized for their substantial bioactive components. PURPOSE This review aims to synthesize developments from 2014 to 2023 concerning the botanical characteristics, ethnopharmacology, nutritional values, chemical compositions, pharmacological activities, mechanisms of action, and toxicity of these species. METHODS Data on the three Rheum species were gathered from a comprehensive review of peer-reviewed articles, patents, and clinical trials accessed through PubMed, Google Scholar, Web of Science, and CNKI. RESULTS The aerial parts are nutritionally rich, providing essential amino acids, fatty acids, and minerals, suitable for use as health foods or supplements. Studies have identified 143 chemical compounds, including anthraquinones, anthrones, flavonoids, and chromones, which contribute to their broad pharmacological properties such as laxative, anti-diarrheal, neuroprotective, hepatoprotective, cardiovascular, antidiabetic, antitumor, anti-inflammatory, antiviral, and antibacterial effects. Notably, the materials science approach has enhanced understanding of their medicinal capabilities through the evaluation of bioactive compounds in different therapeutic contexts. CONCLUSION As medicinal and economically significant herb species, Rheum species provide both edible aerial parts and medicinal underground components that offer substantial health benefits. These characteristics present new opportunities for developing nutritional ingredients and therapeutic products, bolstering the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Fengyuan Yan
- The First People`s Hospital of Lanzhou City, Lanzhou 730050, PR China
| | - Yudong Ma
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiao Guo
- College of Tibetan Medicine, Qinghai University, Xining 810016, PR China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Müller-Heupt LK, Eckelt A, Eckelt J, Groß J, Opatz T, Kommerein N. An In Vitro Study of Local Oxygen Therapy as Adjunctive Antimicrobial Therapeutic Option for Patients with Periodontitis. Antibiotics (Basel) 2023; 12:990. [PMID: 37370309 DOI: 10.3390/antibiotics12060990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a common global disease caused by bacterial dysbiosis leading to tissue destruction, and it is strongly associated with anaerobic bacterial colonization. Therapeutic strategies such as oxygen therapy have been developed to positively influence the dysbiotic microbiota, and the use of oxygen-releasing substances may offer an added benefit of avoiding systemic effects commonly associated with antibiotics taken orally or hyperbaric oxygen therapy. Therefore, the oxygen release of calcium peroxide (CaO2) was measured using a dissolved oxygen meter, and CaO2 solutions were prepared by dissolving autoclaved CaO2 in sterile filtered and deionized water. The effects of CaO2 on planktonic bacterial growth and metabolic activity, as well as on biofilms of Streptococcus oralis and Porphyromonas gingivalis, were investigated through experiments conducted under anaerobic conditions. The objective of this study was to investigate the potential of CaO2 as an antimicrobial agent for the treatment of periodontitis. Results showed that CaO2 selectively inhibited the growth and viability of P. gingivalis (p < 0.001) but had little effect on S. oralis (p < 0.01), indicating that CaO2 has the potential to selectively affect both planktonic bacteria and mono-species biofilms of P. gingivalis. The results of this study suggest that CaO2 could be a promising antimicrobial agent with selective activity for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Müller-Heupt LK, Wiesmann-Imilowski N, Schröder S, Groß J, Ziskoven PC, Bani P, Kämmerer PW, Schiegnitz E, Eckelt A, Eckelt J, Ritz U, Opatz T, Al-Nawas B, Synatschke CV, Deschner J. Oxygen-Releasing Hyaluronic Acid-Based Dispersion with Controlled Oxygen Delivery for Enhanced Periodontal Tissue Engineering. Int J Mol Sci 2023; 24:ijms24065936. [PMID: 36983008 PMCID: PMC10059003 DOI: 10.3390/ijms24065936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Nadine Wiesmann-Imilowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeck Str. 1, 55131 Mainz, Germany
| | - Sofia Schröder
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pablo Cores Ziskoven
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Philipp Bani
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Peer Wolfgang Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | | | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| |
Collapse
|
6
|
Shen N, Chen Y, Guo F, Cui Y, Wei M, Cheng Z. Influence of different drying methods coupled with different process modes on physicochemical qualities and anthraquinones contents of Rheum palmatum L. Lebensm Wiss Technol 2022; 170:114021. [DOI: 10.1016/j.lwt.2022.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Müller-Heupt LK, Wiesmann N, Schröder S, Korkmaz Y, Vierengel N, Groß J, Dahm R, Deschner J, Opatz T, Brieger J, Al-Nawas B, Kämmerer PW. Extracts of Rheum palmatum and Aloe vera Show Beneficial Properties for the Synergistic Improvement of Oral Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14102060. [PMID: 36297494 PMCID: PMC9610717 DOI: 10.3390/pharmaceutics14102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Various local and systemic factors compromise oral wound healing and may lead to wound dehiscence, inflammation, or ulcers. Currently, there is a lack of topical therapeutical options. Thus, this study aimed to investigate the effect of Aloe vera (AV) and Rheum palmatum root (RPR) on oral wound healing capacity in vitro. The effect of AV and RPR on human primary fibroblast viability and migration was studied by measuring metabolic activity and gap closure in a scratch assay. Furthermore, cell cycle distribution and cytoskeletal features were analyzed. Antimicrobial activity against the oral pathogen Porphyromonas gingivalis was evaluated by broth microdilution assay. AV and RPR increased fibroblast migration after single agent treatment. Synergistic effects of the plant extract combination were observed regarding cellular migration which were confirmed by calculation of the phenomenological combination index (pCI), whereas the cell cycle distribution was not influenced. Furthermore, the combination of AV and RPR showed synergistic antibacterial effects as determined by the fractional inhibitory concentration index. This study demonstrated that the combination of AV and RPR can promote the migration of human primary fibroblasts in vitro and exert antimicrobial efficacy against P. gingivalis, suggesting these compounds for the topical treatment of wound healing disorders.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-17-5086
| | - Nadine Wiesmann
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sofia Schröder
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Nina Vierengel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rolf Dahm
- Beratung für Informationssysteme und Systemintegration, Gärtnergasse 1, 55116 Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| |
Collapse
|