1
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Douchi D, Si Larbi G, Fel B, Bonnanfant M, Louwagie M, Jouhet J, Agnely M, Pouget S, Maréchal E. Dryland Endolithic Chroococcidiopsis and Temperate Fresh Water Synechocystis Have Distinct Membrane Lipid and Photosynthesis Acclimation Strategies upon Desiccation and Temperature Increase. PLANT & CELL PHYSIOLOGY 2024; 65:939-957. [PMID: 37944070 DOI: 10.1093/pcp/pcad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
An effect of climate change is the expansion of drylands in temperate regions, predicted to affect microbial biodiversity. Since photosynthetic organisms are at the base of ecosystem's trophic networks, we compared an endolithic desiccation-tolerant Chroococcidiopsis cyanobacteria isolated from gypsum rocks in the Atacama Desert with a freshwater desiccation-sensitive Synechocystis. We sought whether some acclimation traits in response to desiccation and temperature variations were shared, to evaluate the potential of temperate species to possibly become resilient to future arid conditions. When temperature varies, Synechocystis tunes the acyl composition of its lipids, via a homeoviscous acclimation mechanism known to adjust membrane fluidity, whereas no such change occurs in Chroococcidiopsis. Vice versa, a combined study of photosynthesis and pigment content shows that Chroococcidiopsis remodels its photosynthesis components and keeps an optimal photosynthetic capacity at all temperatures, whereas Synechocystis is unable to such adjustment. Upon desiccation on a gypsum surface, Synechocystis is rapidly unable to revive, whereas Chroococcidiopsis is capable to recover after three weeks. Using X-ray diffraction, we found no evidence that Chroococcidiopsis could use water extracted from gypsum crystals in such conditions as a surrogate for missing water. The sulfolipid sulfoquinovosyldiacylglycerol becomes the prominent membrane lipid in both dehydrated cyanobacteria, highlighting an overlooked function for this lipid. Chroococcidiopsis keeps a minimal level of monogalactosyldiacylglycerol, which may be essential for the recovery process. Results support that two independent adaptation strategies have evolved in these species to cope with temperature and desiccation increase and suggest some possible scenarios for microbial biodiversity change triggered by climate change.
Collapse
Affiliation(s)
- Damien Douchi
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Gregory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Benjamin Fel
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Marlène Bonnanfant
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Mathilde Louwagie
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Mathias Agnely
- Saint Gobain Research Paris, SAINT-GOBAIN, 39 quai Lucien Lefranc, Aubervilliers Cedex 93303, France
| | - Stéphanie Pouget
- Laboratoire Modélisation et Exploration des Matériaux, Université Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, IRIG; CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| |
Collapse
|
3
|
Mugnai G, Borruso L, Wu YL, Gallinaro M, Cappitelli F, Zerboni A, Villa F. Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168026. [PMID: 37907101 DOI: 10.1016/j.scitotenv.2023.168026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Rock art paintings represent fragile ecosystems supporting complex microbial communities tuned to the lithic substrate and climatic conditions. The composition and activity of these microbial communities associated with different weathering patterns affecting rock art sites remain unexplored. This study aimed to explore how bacterial communities adapt their ecological strategies based on substrate weathering, while also examining the role of their metabolic pathways in either biodeterioration or bioprotection of the underlying stone. SEM-EDS investigations coupled with 16S rRNA gene sequencing and PICRUSt2 analysis were applied on different weathered surfaces that affect southern Ethiopian rock paintings to investigate the relationships between the current stone microbiome and weathering patterns. The findings revealed that samples experiencing low and high weathering reached a climax stage characterized by stable microenvironments and limited resources. This condition favored K-strategist microorganisms, leading to reduced α-biodiversity and a community with a positive or neutral impact on the substrate. In contrast, moderately-weathered samples displayed diverse microhabitats, resulting in the prevalence of r-strategist bacteria, increased α-biodiversity, and the presence of specialist microorganisms. Moreover, the bacterial communities in moderately-weathered samples demonstrated the highest potential for carbon fixation, stress responses, and complete nitrogen and sulfur cycles. This bacterial community also showed the potential to negatively impact the underlying substrate. This research provided valuable insights into the little-understood ecology of bacterial communities inhabiting deteriorated surfaces, shedding light on the potential role of these microorganisms in the sustainable conservation of rock art.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia (PG), IT, Italy.
| | - Luigimaria Borruso
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Ying-Li Wu
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Gallinaro
- Dipartimento di Scienze dell'Antichità, Università di Roma La Sapienza, 00185 Rome, Italy.
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
4
|
Antonaru LA, Selinger VM, Jung P, Di Stefano G, Sanderson ND, Barker L, Wilson DJ, Büdel B, Canniffe DP, Billi D, Nürnberg DJ. Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales. ISME COMMUNICATIONS 2023; 3:113. [PMID: 37857858 PMCID: PMC10587186 DOI: 10.1038/s43705-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.
Collapse
Affiliation(s)
- Laura A Antonaru
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany.
- Department of Life Sciences, Imperial College London, London, UK.
| | - Vera M Selinger
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Giorgia Di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Nicholas D Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Burkhard Büdel
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany.
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
6
|
Billi D, Napoli A, Mosca C, Fagliarone C, de Carolis R, Balbi A, Scanu M, Selinger VM, Antonaru LA, Nürnberg DJ. Identification of far-red light acclimation in an endolithic Chroococcidiopsis strain and associated genomic features: Implications for oxygenic photosynthesis on exoplanets. Front Microbiol 2022; 13:933404. [PMID: 35992689 PMCID: PMC9386421 DOI: 10.3389/fmicb.2022.933404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Deserts represent extreme habitats where photosynthetic life is restricted to the lithic niche. The ability of rock-inhabiting cyanobacteria to modify their photosynthetic apparatus and harvest far-red light (near-infrared) was investigated in 10 strains of the genus Chroococcidiopsis, previously isolated from diverse endolithic and hypolithic desert communities. The analysis of their growth capacity, photosynthetic pigments, and apcE2-gene presence revealed that only Chroococcidiopsis sp. CCMEE 010 was capable of far-red light photoacclimation (FaRLiP). A total of 15 FaRLiP genes were identified, encoding paralogous subunits of photosystem I, photosystem II, and the phycobilisome, along with three regulatory elements. CCMEE 010 is unique among known FaRLiP strains by undergoing this acclimation process with a significantly reduced cluster, which lacks major photosystem I paralogs psaA and psaB. The identification of an endolithic, extremotolerant cyanobacterium capable of FaRLiP not only contributes to our appreciation of this phenotype’s distribution in nature but also has implications for the possibility of oxygenic photosynthesis on exoplanets.
Collapse
Affiliation(s)
- Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Daniela Billi,
| | - Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Amedeo Balbi
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Scanu
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Vera M. Selinger
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Laura A. Antonaru
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|