1
|
Gadallah AH, Hafez RS, Fahim KM, Ahmed LI. Application of rosemary oil nano-emulsion as antimicrobial and antioxidant natural alternative in pasteurized cream and Karish cheese. Int J Food Microbiol 2024; 422:110823. [PMID: 38991433 DOI: 10.1016/j.ijfoodmicro.2024.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Essential oils possess significant antimicrobial and antioxidant properties and are increasingly used as natural substitutes for food preservation. Therefore, this study investigated the potential application of rosemary essential oil (REO) and REO nano-emulsion in the dairy plant. The antimicrobial effects of REO and REO nano-emulsion were determined by an agar well diffusion assay after chemical profiling by Gas Chromatography-Mass Spectrometry (GC-MS). The REO nano-emulsion was characterized by a Transmission Electron Microscope (TEM). The REO chemical profile revealed the presence of 42 chemical compounds, including 1, 8-cineole (9.72 %), and α-pinene (5.46 %) as major active components. REO nano-emulsion demonstrated significant antimicrobial activity compared to REO (P < 0.05) with a MIC value of 0.0001 mg/ml against Listeria monocytogenes and Aspergillus flavus and 0.001 mg/ml against Pseudomonas aeruginosa and Bacillus cereus. REO nano-emulsion enhanced the oxidative stability of pasteurized fresh cream, revealing a non-significant difference compared with that inoculated with butylated hydroxy anisol (BHA; synthetic antioxidant) (P˃ 0.05). Fortified cream and Karish cheese with REO nano-emulsion were evaluated organoleptically, and the results showed higher grades of overall acceptability when compared to control samples with a statistically significant difference (P < 0.05). Viability studies were estimated using the previously mentioned microorganisms in fortified fresh cream and Karish cheese with REO nano-emulsion. Results of the fortified cream showed a complete reduction of L. monocytogenes, A. flavus, and B. cereus on days 5, 7, and 10, respectively, and a 96.93 % reduction of P. aeruginosa by the end of the storage period. Regarding Karish cheese viability studies, C. albicans, A. flavus, and P. aeruginosa exhibited complete reduction on days 10, 10, and 15 of storage, respectively. In conclusion, REO nano-emulsion was recommended as a natural, safe, and effective antimicrobial and antioxidant additive in the dairy industry.
Collapse
Affiliation(s)
- Ahmed Hussein Gadallah
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Ragaa Shehata Hafez
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Karima Mogahed Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Lamiaa Ibrahim Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
2
|
Movahedi F, Nirmal N, Wang P, Jin H, Grøndahl L, Li L. Recent advances in essential oils and their nanoformulations for poultry feed. J Anim Sci Biotechnol 2024; 15:110. [PMID: 39123220 PMCID: PMC11316336 DOI: 10.1186/s40104-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development. Essential oils (EOs), as natural, plant-derived compounds, have demonstrated antimicrobial and antioxidant properties. EOs may potentially improve poultry health and growth performance when included in poultry feed. Nevertheless, the incorporation of EOs as nutritional additives is hindered by their high volatility, low water solubility, poor intestinal absorption, and sensitivity to environmental conditions. Recently, nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges, improving the stability and bioavailability of EOs, and enabling targeted delivery in poultry feed. This review provides an overview of the antioxidant and antibacterial properties of EOs, the current limitations of their applications in poultry feed, and the recent advancements in nano-engineering to overcome these limitations. Furthermore, we outline the potential future research direction on EO nanoformulations, emphasizing their promising role in advancing sustainable poultry nutrition.Highlights• Essential oils (EOs) are known as powerful antioxidants and antibacterial agents.• EOs have a high potential to replace antibiotics as feed additives.• Nanoformulations of EOs have shown improved bioactivity and storage stability of EOs.• Nanoformulation promotes the bioavailability and gut adsorption of EOs as feed additives.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pengyuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hongping Jin
- JECHO Biopharmaceuticals Co., Ltd., No. 2633, Zhongbin Avenue, Sino-Singapore Tianjin Eco-city, Binhai New Area, Tianjin, China
| | - Lisbeth Grøndahl
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Abdulsalam RA, Ijabadeniyi OA, Sabiu S. Fatty acid-modified chitosan and nanoencapsulation of essential oils: A snapshot of applications. Carbohydr Res 2024; 542:109196. [PMID: 38936268 DOI: 10.1016/j.carres.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA. Report on CS modified with FA and nanoencapsulation with EO and their applications were appraised. The prospects of CS modified with FA and EO nanoencapsulation in food and fruit preservation were outlined. Most chitosan-fatty acid (CS-FA) studies have found relevance in water, medical and pharmaceutical industries, with few studies on food preservation. CS-FA formulation with EOs shows substantial potential in preserving fruits and will significantly impact the food industry in the future by extending the shelf life of fruits and reducing food waste.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluwatosin Ademola Ijabadeniyi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
4
|
Alsakhawy SA, Baghdadi HH, El-Shenawy MA, El-Hosseiny LS. Enhancement of lemongrass essential oil physicochemical properties and antibacterial activity by encapsulation in zein-caseinate nanocomposite. Sci Rep 2024; 14:17278. [PMID: 39068244 PMCID: PMC11283490 DOI: 10.1038/s41598-024-67273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Essential oils (EOs) represent a pivotal source for developing potent antimicrobial drugs. However, EOs have seldom found their way to the pharmaceutical market due to their instability and low bioavailability. Nanoencapsulation is an auspicious strategy that may circumvent these limitations. In the current study, lemongrass essential oil (LGO) was encapsulated in zein-sodium caseinate nanoparticles (Z-NaCAS NPs). The fabricated nanocomposite was characterized using dynamic light scattering, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy. The antimicrobial activity of LGO loaded NPs was assessed in comparison to free LGO against Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae. Furthermore, their antibacterial mechanism was examined by alkaline phosphatase, lactate dehydrogenase, bacterial DNA and protein assays, and scanning electron microscopy. Results confirmed the successful encapsulation of LGO with particle size of 243 nm, zeta potential of - 32 mV, and encapsulation efficiency of 84.7%. Additionally, the encapsulated LGO showed an enhanced thermal stability and a sustained release pattern. Furthermore, LGO loaded NPs exhibited substantial antibacterial activity, with a significant 2 to 4 fold increase in cell wall permeability and intracellular enzymes leakage versus free LGO. Accordingly, nanoencapsulation in Z-NaCAS NPs improved LGO physicochemical and antimicrobial properties, expanding their scope of pharmaceutical applications.
Collapse
Affiliation(s)
- Sara A Alsakhawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Moustafa A El-Shenawy
- Department of Food Microbiology, National Research Center, Dokki, Cairo, 12311, Egypt
| | - Lobna S El-Hosseiny
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
5
|
Ullah N, Hasnain SZU, Baloch R, Amin A, Nasibova A, Selakovic D, Rosic GL, Islamov S, Naraliyeva N, Jaradat N, Mammadova AO. Exploring essential oil-based bio-composites: molecular docking and in vitro analysis for oral bacterial biofilm inhibition. Front Chem 2024; 12:1383620. [PMID: 39086984 PMCID: PMC11288909 DOI: 10.3389/fchem.2024.1383620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
Oral bacterial biofilms are the main reason for the progression of resistance to antimicrobial agents that may lead to severe conditions, including periodontitis and gingivitis. Essential oil-based nanocomposites can be a promising treatment option. We investigated cardamom, cinnamon, and clove essential oils for their potential in the treatment of oral bacterial infections using in vitro and computational tools. A detailed analysis of the drug-likeness and physicochemical properties of all constituents was performed. Molecular docking studies revealed that the binding free energy of a Carbopol 940 and eugenol complex was -2.0 kcal/mol, of a Carbopol 940-anisaldehyde complex was -1.9 kcal/mol, and a Carbapol 940-eugenol-anisaldehyde complex was -3.4 kcal/mol. Molecular docking was performed against transcriptional regulator genes 2XCT, 1JIJ, 2Q0P, 4M81, and 3QPI. Eugenol cinnamaldehyde and cineol presented strong interaction with targets. The essential oils were analyzed against Staphylococcus aureus and Staphylococcus epidermidis isolated from the oral cavity of diabetic patients. The cinnamon and clove essential oil combination presented significant minimum inhibitory concentrations (MICs) (0.0625/0.0312 mg/mL) against S. epidermidis and S. aureus (0.0156/0.0078 mg/mL). In the anti-quorum sensing activity, the cinnamon and clove oil combination presented moderate inhibition (8 mm) against Chromobacterium voilaceum with substantial violacein inhibition (58% ± 1.2%). Likewise, a significant biofilm inhibition was recorded in the case of S. aureus (82.1% ± 0.21%) and S. epidermidis (84.2% ± 1.3%) in combination. It was concluded that a clove and cinnamon essential oil-based formulation could be employed to prepare a stable nanocomposite, and Carbapol 940 could be used as a compatible biopolymer.
Collapse
Affiliation(s)
- Niamat Ullah
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Syed Zia Ul Hasnain
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Baloch
- Allama Iqbal Teaching Hospital, Dera Ghazi Khan, Pakistan
| | - Adnan Amin
- Natural Products Research Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Aygun Nasibova
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Luka Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sokhib Islamov
- Department of Technology of Storage and Processing of Agricultural Products, Tashkent State Agrarian University, Tashkent, Uzbekistan
| | | | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | |
Collapse
|
6
|
Pires HM, Bastos LM, da Silva EF, Fonseca BB, Sommerfeld S, de Oliveira Junior RJ, Ribeiro LNDM. Antimicrobial Activity of Essential-Oil-Based Nanostructured Lipid Carriers against Campylobacter Spp. Isolated from Chicken Carcasses. Pharmaceutics 2024; 16:922. [PMID: 39065619 PMCID: PMC11280039 DOI: 10.3390/pharmaceutics16070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Campylobacter is a virulent Gram-negative bacterial genus mainly found in the intestines of poultry. The indiscriminate use of traditional antibiotics has led to drug resistance in these pathogens, necessitating the development of more efficient and less toxic therapies. Despite their complex biologically active structures, the clinical applications of essential oils (EOs) remain limited. Therefore, this study aimed to increase the bioavailability, stability, and biocompatibility and decrease the photodegradation and toxicity of EO using nanotechnology. The diffusion disk test revealed the potent anti-Campylobacter activity of cinnamon, lemongrass, clove, geranium, and oregano EOs (>50 mm). These were subsequently used to prepare nanostructured lipid carriers (NLCs). Formulations containing these EOs inhibited Campylobacter spp. growth at low concentrations (0.2 mg/mL). The particle size, polydispersity index, and zeta potential of these systems were monitored, confirming its physicochemical stability for 210 days at 25 °C. FTIR-ATR and DSC analyses confirmed excellent miscibility among the excipients, and FE-SEM elucidated a spherical shape with well-delimited contours of nanoparticles. The best NLCs were tested regarding nanotoxicity in a chicken embryo model. These results indicate that the NLC-based geranium EO is the most promising and safe system for the control and treatment of multidrug-resistant strains of Campylobacter spp.
Collapse
Affiliation(s)
- Henrique Machado Pires
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (H.M.P.); (L.M.B.); (E.F.d.S.); (R.J.d.O.J.)
| | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (H.M.P.); (L.M.B.); (E.F.d.S.); (R.J.d.O.J.)
| | - Elenice Francisco da Silva
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (H.M.P.); (L.M.B.); (E.F.d.S.); (R.J.d.O.J.)
| | - Belchiolina Beatriz Fonseca
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38400-982, Brazil; (B.B.F.); (S.S.)
| | - Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia 38400-982, Brazil; (B.B.F.); (S.S.)
| | - Robson José de Oliveira Junior
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (H.M.P.); (L.M.B.); (E.F.d.S.); (R.J.d.O.J.)
| | - Lígia Nunes de Morais Ribeiro
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38400-902, Brazil; (H.M.P.); (L.M.B.); (E.F.d.S.); (R.J.d.O.J.)
| |
Collapse
|
7
|
Ali Ghoflgar Ghasemi M, Hamishehkar H, Javadi A, Homayouni-Rad A, Jafarizadeh-Malmiri H. Natural-based edible nanocomposite coating for beef meat packaging. Food Chem 2024; 435:137582. [PMID: 37774610 DOI: 10.1016/j.foodchem.2023.137582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Researchers have made significant discoveries in addressing the limitations of essential oils (EOs) in food packaging using encapsulation systems combined with nanoparticles (NPs). This study aimed to develop a unique coating for beef preservation using nanostructured lipid carriers (NLCs). The optimal formulation of NLCs was determined based on size, zeta potential, and loading rate, achieving a content of 71.4% savory EO. A composite coating containing NPs was then created using different concentrations of NLCs (0, 0.85%, 1.7%, 2.55%, and 3.4%). The antimicrobial effectiveness of the coatings was assessed using well-diffusion assays to identify the best coating (17 mm). This optimized coating was applied to beef samples for 12 days, and extensive evaluation was conducted over time. The results demonstrated that the encapsulation percentage was higher than 98.7%. The optimal coating (CMC-OM-ZnO NPs-NLCs 3.4%) significantly reduced microbial growth (total count: over 1.6 log CFU/g), pH, thiobarbituric acid value (TBA), and total volatile nitrogen (TVN) compared with the control samples (P < 0.05). Overall, this novel bioactive packaging enriched with lipidic and inorganic nanomaterials represents an innovative way to improve meat products' oxidative and microbial stability.
Collapse
Affiliation(s)
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Iran.
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Jafarizadeh-Malmiri
- Department of Food Engineering, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
8
|
Jiang X, Yu Y, Ma S, Li L, Yu M, Han M, Yuan Z, Zhang J. Chitosan nanoparticles loaded with Eucommia ulmoides seed essential oil: Preparation, characterization, antioxidant and antibacterial properties. Int J Biol Macromol 2024; 257:128820. [PMID: 38103671 DOI: 10.1016/j.ijbiomac.2023.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Eucommia ulmoides seed essential oil (EUSO) is a natural plant oil rich in various nutrients, which has been widely used due to its unique medicinal effects. However, it is prone to oxidation and rancidity under many adverse environmental influences. Nanoencapsulation technology can protect and slow down the loss of its biological activity. In this study, chitosan nanoparticles (CSNPs) loaded with EUSO were prepared by emulsification and ionic gel technology. EUSO-CSNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results confirmed the success of EUSO encapsulation and the encapsulation rate ranged from 36.95 % to 67.80 %. Nanoparticle size analyzer, Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) showed that CSNPs were spherical particles with a range of 200.6-276.0 nm. The results of in vitro release study indicated that the release of EUSO was phased, and EUSO-CSNPS had certain sustained-release properties. Furthermore, EUSO-CSNPs had higher antioxidant and antibacterial abilities than pure EUSO and chitosan, which was verified through free radical scavenging experiments and bacteria biofilm experiments, respectively. This technology can enhance the medicinal value of EUSO in biomedical and other fields, and will provide support for in vivo research of EUSO-CSNPs in the future.
Collapse
Affiliation(s)
- Xin Jiang
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yufan Yu
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuting Ma
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lianshi Li
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Meiqi Yu
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Meijie Han
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
9
|
da Silva EF, Bastos LM, Fonseca BB, Ribas RM, Sommerfeld S, Pires HM, dos Santos FAL, Ribeiro LNDM. Lipid nanoparticles based on natural matrices with activity against multidrug resistant bacterial species. Front Cell Infect Microbiol 2024; 13:1328519. [PMID: 38264725 PMCID: PMC10803469 DOI: 10.3389/fcimb.2023.1328519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Lately, the bacterial multidrug resistance has been a reason to public health concerning around world. The development of new pharmacology therapies against infections caused by multidrug-resistant bacteria is urgent. In this work, we developed 10 NLC formulations composed of essential oils (EO), vegetable butter and surfactant. The formulations were evaluated for long-term and thermal cycling stability studies in terms of (particle size, polydispersion index and Zeta potential). In vitro antimicrobial assays were performed using disk diffusion test and by the determination of the minimum inhibitory concentration (MIC) performed with fresh and a year-old NLC. The most promising system and its excipients were structurally characterized through experimental methodologies (FTIR-ATR, DSC and FE-SEM). Finally, this same formulation was studied through nanotoxicity assays on the chicken embryo model, analyzing different parameters, as viability and weight changes of embryos and annexes. All the developed formulations presented long-term physicochemical and thermal stability. The formulation based on cinnamon EO presented in vitro activity against strains of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from humans and in vivo biocompatibility. Considering these promising results, such system is able to be further tested on in vivo efficacy assays.
Collapse
Affiliation(s)
| | | | - Belchiolina Beatriz Fonseca
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | | |
Collapse
|
10
|
Sarangi A, Das BS, Panigrahi LL, Arakha M, Bhattacharya D. Formulation of Garlic Essential Oil-assisted Silver Nanoparticles and Mechanistic Evaluation of their Antimicrobial Activity against a Spectrum of Pathogenic Microorganisms. Curr Top Med Chem 2024; 24:2000-2012. [PMID: 39092647 PMCID: PMC11497146 DOI: 10.2174/0115680266322180240712055727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The synthesis of nanoparticles using the principle of green chemistry has achieved huge potential in nanomedicine. Here, we report the synthesis of silver nanoparticles (Ag- NPs) employing garlic essential oil (GEO) due to wide applications of GEO in the biomedical and pharmaceutical industry. OBJECTIVE This study aimed to synthesise garlic essential oil-assisted silver nanoparticles and present their antimicrobial and antibiofilm activities with mechanistic assessment. METHOD Initially, the formulation of AgNPs was confirmed using different optical techniques, such as XRD, FT-IR, DLS, zeta potential, SEM, and EDX analysis, which confirmed the formulation of well-dispersed, stable, and spherical AgNPs. The antimicrobial and antibiofilm activity of GEO-assisted AgNPs was evaluated against a spectrum of pathogenic microorganisms, such as Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria. RESULTS The AgNPs exhibited remarkable antimicrobial and anti-biofilm activity against all tested strains. The mechanism behind the antimicrobial activity of AgNPs was explored by estimating the amount of reactive oxygen species (ROS) generated due to the interaction of AgNP with bacterial cells and observing the morphological changes of bacteria upon AgNP interaction. CONCLUSION The findings of this study concluded that ROS generation due to the interaction of AgNPs with bacterial cells put stress on bacterial membranes, altering the morphology of bacteria, exhibiting remarkable antimicrobial activity, and preventing biofilm formation.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Debapriya Bhattacharya
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
11
|
Zhao D, Ma Y, Wang W, Xiang Q. Antibacterial activity and mechanism of cinnamon essential oil nanoemulsion against Pseudomonas deceptionensis CM2. Heliyon 2023; 9:e19582. [PMID: 37809560 PMCID: PMC10558840 DOI: 10.1016/j.heliyon.2023.e19582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
This work aimed to evaluate the antibacterial activity and mechanism of cinnamon essential oil nanoemulsion (CON) against Pseudomonas deceptionensis CM2. The results revealed that CON could effectively inhibit the proliferation of P. deceptionensis CM2 cells in a time- and concentration-dependent manner. After 4 h of incubation with CON at the minimum inhibitory concentration (0.125 mg/mL), the relative fluorescence intensity of propidium iodide and 1-N-phenylnapthylamine (NPN) was increased by 32.0% and 351.4%, respectively. The membrane permeability of P. deceptionensis CM2 cells was significantly disrupted after CON treatment, resulting in the leakage of intracellular substances (such as proteins and electrolytes). CON also caused significant increases in the DiBAC4(3) fluorescence intensity of P. deceptionensis CM2 cells. These results demonstrate that CON induced inactivation of P. deceptionensis CM2 by destroying the integrity and function of bacterial membrane. A higher level of intracellular reactive oxygen species (ROS) was observed in CON-treated cells (p < 0.05), compared with control cells. Moreover, the addition of glutathione to the growth medium remarkably decreased the antimicrobial activity of CON against P. deceptionensis CM2, further confirming that oxidative stress played an important role in the antimicrobial activity of CON. Overall, CON may exhibit antibacterial effects by causing damage to the bacterial membranes and oxidative stress.
Collapse
Affiliation(s)
- Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Yanqing Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Wenwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Shehabeldine AM, Doghish AS, El-Dakroury WA, Hassanin MMH, Al-Askar AA, AbdElgawad H, Hashem AH. Antimicrobial, Antibiofilm, and Anticancer Activities of Syzygium aromaticum Essential Oil Nanoemulsion. Molecules 2023; 28:5812. [PMID: 37570781 PMCID: PMC10421252 DOI: 10.3390/molecules28155812] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately 32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately 225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion against S. aureus significantly decreased the development of biofilm compared with CL-emulsion. Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion. Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, antifungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical applications after extensive studies in vivo.
Collapse
Affiliation(s)
- Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2022 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
13
|
Essid R, Ayed A, Djebali K, Saad H, Srasra M, Othmani Y, Fares N, Jallouli S, Abid I, Alothman MR, Limam F, Tabbene O. Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles. Molecules 2023; 28:5681. [PMID: 37570651 PMCID: PMC10419485 DOI: 10.3390/molecules28155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.
Collapse
Affiliation(s)
- Rym Essid
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Ameni Ayed
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Kais Djebali
- Valorization of Useful Material Laboratory (LVMU), National Research Center in Material Sciences (CNRSM) Technopôle Borj Cedria, BP 73, Soliman 8027, Tunisia
| | - Houda Saad
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Mondher Srasra
- Centre National en Recherche en Sciences des Matériaux, “CNRSM” Technopole Borj-Cedria-Route Touristique Soliman, BP-273, Soliman 8027, Tunisia
| | - Yasmine Othmani
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Selim Jallouli
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Monerah Rashed Alothman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ferid Limam
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Olfa Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
14
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
15
|
Gonzalez JM. Special Issue: "New Methods in Microbial Research 2.0": Editorial. Microorganisms 2023; 11:718. [PMID: 36985291 PMCID: PMC10057640 DOI: 10.3390/microorganisms11030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Today, it is definitively accepted that microorganisms play a central role in the functioning and maintenance of our planet and the organisms thriving on it [...].
Collapse
Affiliation(s)
- Juan M Gonzalez
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), E-41012 Sevilla, Spain
| |
Collapse
|
16
|
Nano-technology platforms to increase the antibacterial drug suitability of essential oils: A drug prospective assessment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Elian C, Andaloussi SA, Moilleron R, Decousser JW, Boyer C, Versace DL. Biobased polymer resources and essential oils: a green combination for antibacterial applications. J Mater Chem B 2022; 10:9081-9124. [PMID: 36326108 DOI: 10.1039/d2tb01544g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To fight nosocomial infections, the excessive use of antibiotics has led to the emergence of multidrug-resistant microorganisms, which are now considered a relevant public health threat by the World Health Organization. To date, most antibacterial systems are based on the use of petro-sourced polymers, but the global supplies of these resources are depleting. Besides, silver NPs are widely accepted as the most active biocide against a wide range of bacterial strains but their toxicity is an issue. The growing interest in natural products has gained increasing interest in the last decade. Therefore, the design of functional antibacterial materials derived from biomass remains a significant challenge for the scientific community. Consequently, attention has shifted to naturally occurring substances such as essential oils (EOs), which are classified as Generally Recognized as Safe (GRAS). EOs can offer an alternative to the common antimicrobial agents as an inner solution or biocide agent to inhibit the resistance mechanism. Herein, this review not only aims at providing developments in the antibacterial modes of action of EOs against various bacterial strains and the recent advances in genomic and proteomic techniques for the elucidation of these mechanisms but also presents examples of biobased polymer resource-based EO materials and their antibacterial activities. Especially, we describe the antibacterial properties of biobased polymers, e.g. cellulose, starch, chitosan, PLA PHAs and proteins, associated with EOs (cinnamon (CEO), clove (CLEO), bergamot (BEO), ginger (GEO), lemongrass (LEO), caraway (CAEO), rosemary (REO), Eucalyptus globulus (EGEO), tea tree (TTEO), orange peel (OPEO) and apricot (Prunus armeniaca) kernel (AKEO) essential oils). Finally, we discuss the influence of EOs on the mechanical strength of bio-based materials.
Collapse
Affiliation(s)
- Christine Elian
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France. .,Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Samir Abbad Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Régis Moilleron
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Cyrille Boyer
- Australian Center for Nanomedicine (ACN), Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney, Australia
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
18
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|