Garand M, Huang SSY, Goessling LS, Wan F, Santillan DA, Santillan MK, Brar A, Wylie TN, Wylie KM, Eghtesady P. Virome Analysis and Association of Positive Coxsackievirus B Serology during Pregnancy with Congenital Heart Disease.
Microorganisms 2023;
11:262. [PMID:
36838226 PMCID:
PMC9963073 DOI:
10.3390/microorganisms11020262]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND
We have previously shown coxsackievirus B (CVB) to be a potent inducer of congenital heart disease (CHD) in mice. The clinical relevance of these findings in humans and the roles of other viruses in the pathogenesis of CHD remain unknown.
METHODS
We obtained plasma samples, collected at all trimesters, from 89 subjects (104 pregnancies), 73 healthy controls (88 pregnancies), and 16 with CHD-affected birth (16 pregnancies), from the Perinatal Family Tissue Bank (PFTB). We performed CVB IgG/IgM serological assays on plasma. We also used ViroCap sequencing and PCR to test for viral nucleic acid in plasma, circulating leukocytes from the buffy coat, and in the media of a co-culture system.
RESULTS
CVB IgG/IgM results indicated that prior exposure was 7.8 times more common in the CHD group (95% CI, 1.14-54.24, adj. p-value = 0.036). However, the CVB viral genome was not detected in plasma, buffy coat, or co-culture supernatant by molecular assays, although other viruses were detected.
CONCLUSION
Detection of viral nucleic acid in plasma was infrequent and specifically no CVB genome was detected. However, serology demonstrated that prior CVB exposure is higher in CHD-affected pregnancies. Further studies are warranted to understand the magnitude of the contribution of the maternal blood virome to the pathogenesis of CHD.
Collapse