1
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Hernández-Ospina DA, Osorio-González CS, Miri S, Kaur Brar S. New perspectives on the anaerobic degradation of BTEX: Mechanisms, pathways, and intermediates. CHEMOSPHERE 2024; 361:142490. [PMID: 38821131 DOI: 10.1016/j.chemosphere.2024.142490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Aromatic hydrocarbons like benzene, toluene, xylene, and ethylbenzene (BTEX) can escape into the environment from oil and gas operations and manufacturing industries posing significant health risks to humans and wildlife. Unlike conventional clean-up methods used, biological approaches such as bioremediation can provide a more energy and labour-efficient and environmentally friendly option for sensitive areas such as nature reserves and cities, protecting biodiversity and public health. BTEX contamination is often concentrated in the subsurface of these locations where oxygen is rapidly depleted, and biodegradation relies on anaerobic processes. Thus, it is critical to understand the anaerobic biodegradation characteristics as it has not been explored to a major extent. This review presents novel insights into the degradation mechanisms under anaerobic conditions and presents a detailed description and interconnection between them. BTEX degradation can follow four activation mechanisms: hydroxylation, carboxylation, methylation, and fumarate addition. Hydroxylation is one of the mechanisms that explains the transformation of benzene into phenol, toluene into benzyl alcohol or p-cresol, and ethylbenzene into 1-phenylethanol. Carboxylation to benzoate is thought to be the primary mechanism of degradation for benzene. Despite being poorly understood, benzene methylation has been also reported. Moreover, fumarate addition is the most widely reported mechanism, present in toluene, ethylbenzene, and xylene degradation. Further research efforts are required to better elucidate new and current alternative catabolic pathways. Likewise, a comprehensive analysis of the enzymes involved as well as the development of advance tools such as omic tools can reveal bottlenecks degradation steps and create more effective on-site strategies to address BTEX pollution.
Collapse
Affiliation(s)
- Diego A Hernández-Ospina
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3.
| |
Collapse
|
3
|
Pi Y, Jia W, Chi S, Meng H, Tang Y. Effects of terminal electron acceptors on the biodegradation of waste motor oil using Chlorella vulgaris-Rhodococcus erythropolis consortia: Kinetic and thermodynamic windows of opportunity analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131960. [PMID: 37393825 DOI: 10.1016/j.jhazmat.2023.131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The Chlorella vulgaris-Rhodococcus erythropolis consortia was constructed for the biodegradation of waste motor oil (WMO), combined with thermodynamic calculations and stoichiometric analyses. The microalgae-bacteria consortium was constructed as C. vulgaris: R. erythropolis = 1:1 (biomass, cell/mL), pH = 7, 3 g/L WMO. Under the same condition, the terminal electron acceptors (TEAs) play a crucial role in the WMO biodegradation, which follows Fe3+ >SO42- > none. The biodegradation of WMO fitted well with the first-order kinetic model under experimental temperatures with different TEAs (R2 >0.98). The WMO biodegradation efficiency reached 99.2 % and 97.1 % with Fe3+ and SO42-as TEAs at 37 °C, respectively. Thermodynamic methanogenesis opportunity windows with Fe3+ as TEA are 2.72 times fold as large as those with SO42-. Microorganism metabolism equations demonstrated the viability of anabolism and catabolism on WMO. This work lays the groundwork for the implementation of WMO wastewater bioremediation and supports research into the biochemical process of WMO biotransformation.
Collapse
Affiliation(s)
- Yongrui Pi
- School of Ocean, Yantai University, Yantai 264005, China.
| | - Wenpeng Jia
- School of Ocean, Yantai University, Yantai 264005, China
| | - Shengkai Chi
- School of Ocean, Yantai University, Yantai 264005, China
| | - Hongke Meng
- School of Ocean, Yantai University, Yantai 264005, China
| | - Yongzheng Tang
- School of Ocean, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Chawla M, Lavania M, Sahu N, Shekhar S, Singh N, More A, Iyer M, Kumar S, Singh K, Lal B. Culture-independent assessment of the indigenous microbial diversity of Raniganj coal bed methane block, Durgapur. Front Microbiol 2023; 14:1233605. [PMID: 37731928 PMCID: PMC10507629 DOI: 10.3389/fmicb.2023.1233605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
It is widely acknowledged that conventional mining and extraction techniques have left many parts of the world with depleting coal reserves. A sustainable method for improving the recovery of natural gas from coalbeds involves enhancing the production of biogenic methane in coal mines. By taking a culture-independent approach, the diversity of the microbial community present in the formation water of an Indian reservoir was examined using 16S rRNA gene amplification in order to study the potential of microbial-enhanced coal bed methane (CBM) production from the deep thermogenic wells at a depth of 800-1200 m. Physicochemical characterization of formation water and coal samples was performed with the aim of understanding the in situ reservoir conditions that are most favorable for microbial CBM production. Microbial community analysis of formation water showed that bacteria were more abundant than archaea. Proteobacteria, Firmicutes, and Bacteroidetes were found as the most prevalent phyla in all the samples. These phyla play a crucial role in providing substrate for the process of methanogenesis by performing fermentative, hydrolytic, and syntrophic functions. Considerable variation in the abundance of microbial genera was observed amongst the selected CBM wells, potentially due to variable local geochemical conditions within the reservoir. The results of our study provide insights into the impact of geochemical factors on microbial distribution within the reservoir. Further, the study demonstrates lab-scale enhancement in methane production through nutrient amendment. It also focuses on understanding the microbial diversity of the Raniganj coalbed methane block using amplicon sequencing and further recognizing the potential of biogenic methane enhancement through microbial stimulation. The findings of the study will help as a reference for better strategization and implementation of on-site microbial stimulation for enhanced biogenic methane production in the future.
Collapse
Affiliation(s)
- Mansi Chawla
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Meeta Lavania
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Nishi Sahu
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | | | - Nimmi Singh
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| | - Anand More
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | - Magesh Iyer
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | - Sanjay Kumar
- Essar Oil and Gas Exploration and Production Limited, Durgapur, West Bengal, India
| | | | - Banwari Lal
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
5
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|