1
|
Rizzi F, Juan B, Espadaler-Mazo J, Capellas M, Huedo P. Lactiplantibacillus plantarum KABP051: Stability in Fruit Juices and Production of Bioactive Compounds During Their Fermentation. Foods 2024; 13:3851. [PMID: 39682922 DOI: 10.3390/foods13233851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The lactic fermentation of fruit and vegetable juices by well-characterised probiotics remains relatively underexplored. We have investigated the stability and impact of Lactiplantibacillus plantarum KABP051 fermentation on orange, apple, and peach juices by microbiological, physicochemical, and sensory evaluation means. For each fruit juice, three different samples were analysed: original fruit juice without probiotic as blank (B), fruit juice inoculated with 107 CFU/mL of probiotic without fermentation (P), and fruit juice inoculated with 107 CFU/mL of probiotic and fermented at 37 °C for 24 h (PF). P samples displayed good stability throughout the study, and PF samples showed an initial increase in CFUs accompanied by a change in pH, confirming the ability of the probiotic to ferment these juices. After 60 days of refrigeration, PF samples contained >107 CFU/mL. Total phenolic content and antioxidant capacity were equivalent in F, P, and PF. Remarkably, deep metabolomic analyses confirmed malolactic fermentation and revealed the production of several bioactive compounds including the antimicrobial substance phenyllactic acid, the immunomodulatory and anti-fatigue amino acid N-acetyl glutamine, the vitamin B3 form nicotinic acid, the monoterpene (-)-β-pinene, and the neurotransmitter acetylcholine, among others, during probiotic fermentation. Finally, a hedonic analysis involving 51 participants showed that probiotic fermented orange juice is well accepted by panellists, with scores comparable to those of the control juice. Overall, we here show that fruit juices are excellent carriers for the delivery of the probiotic L. plantarum KABP051 and its non-alcoholic fermentation can result in tasty functional fruit juices enriched with health-promoting compounds.
Collapse
Affiliation(s)
- Francesca Rizzi
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
| | - Bibiana Juan
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Jordi Espadaler-Mazo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
| | - Marta Capellas
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
2
|
Sun H, Du J, Yan X, Chen X, Zhao L. Dynamic changes in aromas and precursors of edible fungi juice: mixed lactic acid bacteria fermentation enhances flavor characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8541-8552. [PMID: 39392670 DOI: 10.1002/jsfa.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Lactic acid bacteria (LAB) fermentation technology has been increasingly used in the deep processing of edible fungi. However, the flavor profiles of edible fungi products after mixed LAB fermentation have received less attention and how aromas changes during the mixed LAB fermentation are still open questions. In the present study, fermented Hericium erinaceus and Tremella fuciformis compound juice (FHTJ) was prepared by mixed LAB strains. We aimed to systematically monitor the dynamic changes of aromas and precursors throughout the fermentation process and a data-driven association network analysis was used to tentatively illustrate the mechanisms of formation between aromas and their precursors. RESULTS Mixed LAB fermentation could enrich the aroma profile of FHTJ, reducing the unpleasant flavors such as nonanal and 1-octen-3-ol, as well as increasing the floral flavors such as ethyl acetate and α-pinene. Partial least squares-discriminant analysis and relative odor activity values revealed that 11 volatile chemicals were recognized as aroma-active markers. Volcano plot analysis showed that 3-octen-2-one (green flavor) was the key aroma-active marker in each stage, which was down-regulated in fermentation stages I, II and IV, whereas it was up-regulated in stage III. 3-Octen-2-one was significantly negatively correlated with organic acids, particularly pyruvate (r2 = -0.89). Ethyl caprylate (floral flavor) was up-regulated in the late fermentation stage, and showed a negative correlation with sugar alcohols and a positive correlation with organic acids, especially tartaric acid (r2 = 0.96). CONCLUSION The present study demonstrates the beneficial effect of mixed LAB fermentation on flavor characteristics, providing guidance for fermented edible fungi juice flavor quality monitoring and control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hailan Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxin Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xingyue Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Yuan YH, Mu DD, Guo L, Wu XF, Chen XS, Li XJ. From flavor to function: A review of fermented fruit drinks, their microbial profiles and health benefits. Food Res Int 2024; 196:115095. [PMID: 39614507 DOI: 10.1016/j.foodres.2024.115095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Fermented fruit drinks (FFDs) are gaining popularity among consumers for their unique flavors and potential health benefits. This review provides a systematic assessment of the flavor components in FFDs and explores the metabolic pathways for their formation. We examine the interactions between the structure of microbial communities and the development of these flavor components, highlighting the role of microorganisms in shaping the unique taste of FFDs. Additionally, we discuss the potential health benefits associated with FFDs, focusing on their relationship with microbial communities as supported by existing literature. The review also addresses future prospects and challenges in the field. Our findings indicate key fermenting microorganisms, such as lactic acid bacteria, yeast and acetic acid bacteria, are responsible for producing the distinctive flavor components in FFDs, including alcohols, ketones, aldehydes, esters, and fatty acids. These microorganisms also generate organic acids, amino acids, and carbohydrates, contributing to the drink's complex taste. Furthermore, this fermentation process enhances the bioactivity of FFDs, offering potential health benefits like antioxidant, anti-obesity, anti-diabetic, and anti-cancer properties. These insights are crucial for advancing fermentation technology and developing guidelines for producing nutrient-rich, flavorful FFDs.
Collapse
Affiliation(s)
- Yu-Han Yuan
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Dong-Dong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
| | - Xue-Feng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xiang-Song Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
4
|
Olmeda I, Paredes-Martínez F, Sendra R, Casino P, Pardo I, Ferrer S. Biochemical and Structural Characterization of a Novel Psychrophilic Laccase (Multicopper Oxidase) Discovered from Oenococcus oeni 229 (ENOLAB 4002). Int J Mol Sci 2024; 25:8521. [PMID: 39126090 PMCID: PMC11312515 DOI: 10.3390/ijms25158521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.
Collapse
Affiliation(s)
- Isidoro Olmeda
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Francisco Paredes-Martínez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Ramón Sendra
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Patricia Casino
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
- Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Pardo
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Sergi Ferrer
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| |
Collapse
|
5
|
Li P, Song W, Wang Y, Li X, Wu S, Li B, Zhang C. Effects of Heterologous Expression of Genes Related L-Malic acid Metabolism in Saccharomyces uvarum on Flavor Substances Production in Wine. Foods 2024; 13:2038. [PMID: 38998544 PMCID: PMC11241653 DOI: 10.3390/foods13132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
During malolactic fermentation (MLF) of vinification, the harsh L-malic acid undergoes transformation into the milder L-lactic acid, and via decarboxylation reactions it is catalyzed by malolactic enzymes in LAB. The use of bacterial malolactic starter cultures, which usually present challenges in the industry as the suboptimal conditions after alcoholic fermentation (AF), including nutrient limitations, low temperatures, acidic pH levels, elevated alcohol, and sulfur dioxide concentrations after AF, lead to "stuck" or "sluggish" MLF and spoilage of wines. Saccharomyces uvarum has interesting oenological properties and provides a stronger aromatic intensity than Saccharomyces cerevisiae in AF. In the study, the biological pathways of deacidification were constructed in S. uvarum, which made the S. uvarum carry out the AF and MLF simultaneously, as different genes encoding malolactic enzyme (mleS or mleA), malic enzyme (MAE2), and malate permease (melP or MAE1) from Schizosaccharomyces pombe, Lactococcus lactis, Oenococcus oeni, and Lactobacillus plantarum were heterologously expressed. For further inquiry, the effect of L-malic acid metabolism on the flavor balance in wine, the related flavor substances, higher alcohols, and esters production, were detected. Of all the recombinants, the strains WYm1SN with coexpression of malate permease gene MAE1 from S. pombe and malolactic enzyme gene mleS from L. lactis and WYm1m2 with coexpression of gene MAE1 and malate permease gene MAE2 from S. pombe could reduce the L-malic acid contents to about 1 g/L, and in which the mutant WYm1SN exhibited the best effect on the flavor quality improvement.
Collapse
Affiliation(s)
- Ping Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenjun Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yumeng Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xin Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Shankai Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Bingjuan Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Mazzucco MB, Rodríguez ME, Catalina Caballero A, Ariel Lopes C. Differential consumption of malic acid and fructose in apple musts by Pichia kudriavzevii strains. J Appl Microbiol 2024; 135:lxae019. [PMID: 38268424 DOI: 10.1093/jambio/lxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
AIMS To assess the capability of Pichia kudriavzevii strains isolated from wine, cider, and natural environments in North Patagonia to produce ciders with reduced malic acid levels. METHODS AND RESULTS Fermentation kinetics and malic acid consumption were assessed in synthetic media and in regional acidic apple musts. All P. kudriavzevii strains degraded malic acid and grew in synthetic media with malic acid as the sole carbon source. Among these strains, those isolated from cider exhibited higher fermentative capacity, mainly due to increased fructose utilization; however, a low capacity to consume sucrose present in the must was also observed for all strains. The NPCC1651 cider strain stood out for its malic acid consumption ability in high-malic acid Granny Smith apple must. Additionally, this strain produced high levels of glycerol as well as acceptable levels of acetic acid. On the other hand, Saccharomyces cerevisiae ÑIF8 reference strain isolated from Patagonian wine completely consumed reducing sugars and sucrose and showed an important capacity for malic acid consumption in apple must fermentations. CONCLUSIONS Pichia kudriavzevii NPCC1651 strain isolated from cider evidenced interesting features for the consumption of malic acid and fructose in ciders.
Collapse
Affiliation(s)
- María Belén Mazzucco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, 8336 Villa Regina, Río Negro, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, 8324 Cipolletti, Río Negro, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, 8324 Cipolletti, Río Negro, Argentina
| | - Adriana Catalina Caballero
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, 8336 Villa Regina, Río Negro, Argentina
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, 8303 Cinco Saltos, Río Negro, Argentina
| |
Collapse
|
7
|
Dos Santos AC, Seraglio SKT, do Amaral BB, Hahn L, Gomes VV, Gonzaga LV, Costa ACO. High acidity of bracatinga honeydew honey: A new regulatory limit proposal. Food Res Int 2024; 176:113682. [PMID: 38163738 DOI: 10.1016/j.foodres.2023.113682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
The free acidity of bracatinga honeydew honey (BHH) was monthly monitored over short-term storage (four months) until all the samples exceeded 50 mEq kg-1 - the maximum value allowed by the international regulatory honey standards. In addition, BHH quality was also investigated through moisture content, water activity, electrical conductivity, pH, 5-hydroxymethylfurfural, and aliphatic organic acids (AOA) analyses. According to our results, most of the parameters investigated presented significant differences during the short storage period studied; however, the quality parameters (except acidity) did not exceed the limits established by the international regulatory honey standards. Therefore, the high free acidity observed in the BHH samples did not affect its quality. Moreover, the total AOA concentration decreased as the free acidity increased, indicating that the high acidity is not related to postharvest fermentation. Since all BHH samples exceeded the established limit of 50 mEq kg-1 after four months of storage (up to 62.7 mEq kg-1), this data corroborates that this type of honey does not comply with the regulatory honey standards, which represents an obstacle to its commercialization. Therefore, our data reinforce the need for a future reassessment of the international regulatory honey standards regarding the free acidity limit for BHH. In this sense, taking together all the studies developed by our research group since 2014, a new free acidity value of 65 mEq kg-1 is proposed, which may discourage fraud practices and negative impacts on the BHH beekeeping chain.
Collapse
Affiliation(s)
- Adriane Costa Dos Santos
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| | | | - Breno Baumgartner do Amaral
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Laura Hahn
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Victor Valentim Gomes
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| |
Collapse
|