1
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
2
|
Wan S, You P, Shi Q, Hu H, Zhang L, Chen L, Wu Z, Lin S, Song X, Luo Y, Wang Y, Ju F, Jin D, Chen Y. Gut microbiome changes in mouse, Mongolian gerbil, and hamster models following Clostridioides difficile challenge. Front Microbiol 2024; 15:1368194. [PMID: 38638911 PMCID: PMC11024471 DOI: 10.3389/fmicb.2024.1368194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridioides difficile infection (CDI), as well as its etiology and pathogenesis, have been extensively investigated. However, the absence of suitable CDI animal models that reflect CDI symptoms and the associated gut microbiome changes in humans has limited research progress in this field. Thus, we aimed to investigate whether Mongolian gerbils, which present a range of human pathological conditions, can been used in studies on CDI. Methods: In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Methods In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Results The results obtained showed that C. difficile colonized the gastrointestinal tracts of the three rodents, and after the C. difficile challenge, C57BL/6J mice did not manifest CDI symptoms and their intestines showed no significant pathological changes. However, the hamsters showed explosive intestinal bleeding and inflammation and the Mongolian gerbils presented diarrhea as well as increased infiltration of inflammatory cells, mucus secretion, and epithelial cell shedding in their intestinal tissue. Further, intestinal microbiome analysis revealed significant differences with respect to intestinal flora abundance and diversity. Specifically, after C. difficile challenge, the Firmicutes/Bacteroidetes ratio decreased for C57BL/6J mice, but increased significantly for Mongolian gerbils and hamsters. Furthermore, the abundance of Proteobacteria increased in all three models, especially in hamsters, while that of Verrucomicrobia only increased significantly in C57BL/6J mice and Mongolian gerbils. Our results also indicated that differences in the relative abundances of Lactobacillaceae and Akkermansia were primarily responsible for the observed differences in response to C. difficile challenge. Conclusion Based on the observed responses to C. difficile challenge, we concluded for the first time that the Mongolian gerbil could be used as an animal model for CDI. Additionally, the taxa identified in this study may be used as biomarkers for further studies on CDI and to improve understanding regarding changes in gut microbiome in CDI-related diseases.
Collapse
Affiliation(s)
- Shuangshuang Wan
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Peijun You
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qikai Shi
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hui Hu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Lu Zhang
- Environmental Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, China
| | - Leyang Chen
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ziyi Wu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xiaojun Song
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yongneng Luo
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yaxuan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
| | - Feng Ju
- Environmental Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Sheikh IA, Bianchi-Smak J, Laubitz D, Schiro G, Midura-Kiela MT, Besselsen DG, Vedantam G, Jarmakiewicz S, Filip R, Ghishan FK, Gao N, Kiela PR. Transplant of microbiota from Crohn's disease patients to germ-free mice results in colitis. Gut Microbes 2024; 16:2333483. [PMID: 38532703 PMCID: PMC10978031 DOI: 10.1080/19490976.2024.2333483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.
Collapse
Affiliation(s)
- Irshad Ali Sheikh
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | | | - Daniel Laubitz
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Gabriele Schiro
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Monica T. Midura-Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - David G. Besselsen
- Pediatrics, University Animal Care, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sara Jarmakiewicz
- Institute of Health Sciences, Medical College of Rzeszow, Rzeszow University, Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital, Rzeszow, Poland
| | - Fayez K. Ghishan
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Pawel R. Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Han K, Dong H, Peng X, Sun J, Jiang H, Feng Y, Ding J, Xiao S. Transcriptome and the gut microbiome analysis of the impacts of Brucella abortus oral infection in BALB/c mice. Microb Pathog 2023; 183:106278. [PMID: 37532208 DOI: 10.1016/j.micpath.2023.106278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Brucellosis is a zoonotic infectious disease caused by Brucella spp, which could cause serious economic losses to animal husbandry and threaten human public health. Ingestion of contaminated animal products is a common way to acquire Brucella infection in humans, while research on effect of oral Brucella infection on host gut microbiota and the gene expression in intestinal tissues is limited. In the present study, 16S rRNA sequencing and RNA sequencing were conducted to explore gut microbiota and expression profiles of mRNAs in the colon of BALB/c mice, which were infected by Brucella abortus 2308. The fecal samples were collected at 7 and 28 days post infection to observe changes in the gut microbiota during Brucella infection. In the alpha diversity analysis, significantly increased Chao 1 index was observed at 28 days after Brucella infection. The Bray-Curtis distancebased principal coordinate analysis indicated that the WT group showed a separation from the Brucella infection groups. In addition, analysis of composition of microbes revealed that Prevotellaceae_NK3B31_group were more abundant in 1 week and 4 week infection groups, while Turicibacter was only more abundant in 4 week infection group. Based on the RNA-seq assay, a total of 45 differentially expressed genes were detected between Brucella abortus infection group and control group. Furthermore, KEGG pathway enrichment analysis showed that protein processing in endoplasmic reticulum, Legionellosis, Spliceosome, Hippo signaling pathway and Influenza A were significantly enriched in response to Brucella abortus infection. Our finding will help to improve the knowledge of the mechanisms underlying Brucella infection and may provide novel targets for future treatment of this pathogen infection.
Collapse
Affiliation(s)
- Kun Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Dong
- National Institutes for Food and Drug Control, Beijing, 102600, China
| | - Xiaowei Peng
- China Institute of Veterinary Drug Control, Beijing, 102600, China
| | - Jiali Sun
- China Institute of Veterinary Drug Control, Beijing, 102600, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hui Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu Feng
- China Institute of Veterinary Drug Control, Beijing, 102600, China
| | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|