1
|
Miftode IL, Vâță A, Miftode RȘ, Parângă T, Luca MC, Manciuc C, Țimpău AS, Radu V, Roșu MF, Stămăteanu LO, Leca D, Anton-Păduraru DT, Miftode EG. The Impact of Urinary Catheterization on the Antibiotic Susceptibility of ESBL-Producing Enterobacterales: A Challenging Duo. Antibiotics (Basel) 2024; 13:462. [PMID: 38786190 PMCID: PMC11117663 DOI: 10.3390/antibiotics13050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is currently a growing concern among healthcare providers, underscoring the importance of describing the regional susceptibility profile for common microorganisms that are associated with urinary tract infections (UTIs). This knowledge serves as the foundation for proper empirical therapeutic recommendations tailored to local susceptibility patterns. RESULTS We found a high prevalence of ESBL-producing strains (36.9%), with Escherichia coli and Klebsiella spp. being the most prevalent isolated bacteria. Among the catheterized patients, Klebsiella spp. emerged as the primary etiology, with a significant correlation between catheterization and Proteus spp. (p = 0.02) and Providencia stuartii (p < 0.0001). We observed significant correlations between urinary catheterization and older age (68.9 ± 13.7 years vs. 64.2 ± 18.1 years in non-catheterized patients, p = 0.026) and with the presence of an isolate with extensive drug resistance (p < 0.0001) or even pandrug resistance (p < 0.0001). Susceptibility rates significantly decreased for almost all the tested antibiotics during the study period. Notably, susceptibility was markedly lower among catheterized patients, with the most pronounced differences observed for carbapenems (59.6% versus 83.4%, p < 0.0001) and aminoglycosides (37.1% versus 46.9%, p = 0.0001). MATERIALS AND METHODS We conducted a retrospective study analyzing the susceptibility profiles of 724 extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales isolated from urine cultures. Our focus was on highlighting susceptibility profiles among isolates associated with urinary catheterization and assessing the shifts in the susceptibility rates over time. CONCLUSIONS The constant rise in AMR rates among Enterobacterales presents significant challenges in treating severe infections, particularly among urinary catheterized patients. This trend leaves clinicians with limited or no effective treatment options. Consequently, the development and implementation of personalized treatment protocols are imperative to ensure efficient empirical therapies.
Collapse
Affiliation(s)
- Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Andrei Vâță
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Radu-Ștefan Miftode
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Tudorița Parângă
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Mihaela Cătălina Luca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Carmen Manciuc
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Amalia Stefana Țimpău
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Viorel Radu
- Department of Urology, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
| | - Manuel Florin Roșu
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
- Department of Intensive Care Unit, Infectious Diseases Clinical Hospital, 700115 Iasi, Romania
| | - Lidia Oana Stămăteanu
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Daniela Leca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| | - Dana Teodora Anton-Păduraru
- Department of Mother and Child Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-L.M.); (A.V.); (T.P.); (M.C.L.); (C.M.); (L.O.S.); (D.L.); (E.G.M.)
- St. Parascheva Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania;
| |
Collapse
|
2
|
Hanafiah A, Sukri A, Yusoff H, Chan CS, Hazrin-Chong NH, Salleh SA, Neoh HM. Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:127. [PMID: 38391513 PMCID: PMC10885873 DOI: 10.3390/antibiotics13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Hospital environmental surfaces are potential reservoirs for transmitting hospital-associated pathogens. This study aimed to profile microbiomes and antibiotic resistance genes (ARGs) from hospital environmental surfaces using 16S rRNA amplicon and metagenomic sequencing at a tertiary teaching hospital in Malaysia. Samples were collected from patient sinks and healthcare staff counters at surgery and orthopaedic wards. The samples' DNA were subjected to 16S rRNA amplicon and shotgun sequencing to identify bacterial taxonomic profiles, antibiotic resistance genes, and virulence factor pathways. The bacterial richness was more diverse in the samples collected from patient sinks than those collected from staff counters. Proteobacteria and Verrucomicrobia dominated at the phylum level, while Bacillus, Staphylococcus, Pseudomonas, and Acinetobacter dominated at the genus level. Staphylococcus epidermidis and Staphylococcus aureus were prevalent on sinks while Bacillus cereus dominated the counter samples. The highest counts of ARGs to beta-lactam were detected, followed by ARGs against fosfomycin and cephalosporin. We report the detection of mcr-10.1 that confers resistance to colistin at a hospital setting in Malaysia. The virulence gene pathways that aid in antibiotic resistance gene transfer between bacteria were identified. Environmental surfaces serve as potential reservoirs for nosocomial infections and require mitigation strategies to control the spread of antibiotic resistance bacteria.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hamidah Yusoff
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sharifah Azura Salleh
- Infection Control Unit, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hui-Min Neoh
- UKM Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|