1
|
Cui Y, Wang D, Zhang L, Qu X. Research progress on the regulatory mechanism of biofilm formation in probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39244761 DOI: 10.1080/10408398.2024.2400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Probiotic lactic acid bacteria (LAB) must undergo three key stages of testing, including food processing, storage, and gastrointestinal tract environment, their beneficial effects could exert. The biofilm formation of probiotic LAB is helpful for improving their stress resistances, survival rates, and colonization abilities under adverse environmental conditions, laying an important foundation for their probiotic effects. In this review, the formation process, the composition and function of basic components of probiotic LAB biofilm have been summarized. This review focuses on the regulatory mechanism of probiotic LAB biofilm formation. In addition, the characteristics and related mechanisms of probiotics in biofilm state have been analyzed to guide the application of probiotic LAB biofilms in the field of health and food. The biofilm formation of LAB is an extremely complex process involving multiple regulatory factors. Besides quorum sensing (QS), other regulatory factors are not yet fully understood. The probiotic LAB in biofilm state exhibit superior survival rate, adhesion performance, and immunomodulation ability, attribute to various metabolic processes, including stress response, exopolysaccharide (EPS) metabolism, amino acid and protein metabolisms, etc. The understanding about regulatory mechanism of biofilm formation of different probiotic species and strains will accelerate the development and application of probiotics products.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Dongqi Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
2
|
Çam S, Badıllı İ. The effect of NaCl, pH, and phosphate on biofilm formation and exopolysaccharide production by high biofilm producers of Bacillus strains. Folia Microbiol (Praha) 2024; 69:613-624. [PMID: 37897595 DOI: 10.1007/s12223-023-01101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Biofilm formation is an effective survival strategy of plant-associated microorganisms in hostile environments, so the application of biofilm-forming and exopolysaccharide (EPS)-producing beneficial microbes to plants has received more attention in recent years. This study examined the ability of biofilm and EPS production of Bacillus subtilis and Bacillus thuringiensis strains under different NaCl concentrations (0, 50, 100, 200, and 400 mmol/L), pH values (5.5, 6.5, 7.5, and 8.5), and phosphate levels (0, 25, 50, and 100 mmol/L at 0 and 400 mmol/L NaCl). B. subtilis BS2 and B. thuringiensis BS6/BS7 strains significantly increased biofilm formation in a similar pattern to EPS production under salt stress. B. subtilis BS2/BS3 enhanced biofilm production at slightly acidic pH with a lower EPS production but the other strains formed considerably more amount of biofilm and EPS at alkaline pH. Interestingly, higher levels of phosphate substantially decreased biofilm and EPS production at 0 mmol/L NaCl but increased biofilm formation at 400 mmol/L salt concentration. Overall, contrary to phosphate, salt and pH differently influenced biofilm and EPS production by Bacillus strains. EPS production contributed to biofilm formation to some extent under all the conditions tested. Some Bacillus strains produced more abundant biofilm under salt and pH stress, indicating their potential to form in vivo biofilms in rhizosphere and on plants, particularly under unfavorable conditions.
Collapse
Affiliation(s)
- Sedat Çam
- Department of Biology, Faculty of Arts and Sciences, Harran University, Haliliye/Şanlıurfa, 63050, Turkey.
| | - İsmail Badıllı
- Department of Biology, Faculty of Arts and Sciences, Harran University, Haliliye/Şanlıurfa, 63050, Turkey
| |
Collapse
|
3
|
Zhang YM, Qiao B, Shang W, Ding MZ, Xu QM, Duan TX, Cheng JS. Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:89-100. [PMID: 38598883 DOI: 10.1016/j.wasman.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.
Collapse
Affiliation(s)
- Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Tian-Xu Duan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China.
| |
Collapse
|
4
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|