1
|
Parker GD, Plymale A, Hager J, Hanley L, Yu XY. Studying microbially induced corrosion on glass using ToF-SIMS. Biointerphases 2024; 19:051004. [PMID: 39392276 DOI: 10.1116/6.0003883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Microbially induced corrosion (MIC) is an emerging topic that has huge environmental impacts, such as long-term evaluation of microbial interactions with radioactive waste glass, environmental cleanup and disposal of radioactive material, and weathering effects of microbes. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), a powerful mass spectral imaging technique with high surface sensitivity, mass resolution, and mass accuracy, can be used to study biofilm effects on different substrates. Understanding how to prepare biofilms on MIC susceptible substrates is critical for proper analysis via ToF-SIMS. We present here a step-by-step protocol for preparing bacterial biofilms for ToF-SIMS analysis, comparing three biofilm preparation techniques: no desalination, centrifugal spinning (CS), and water submersion (WS). Comparisons of two desalinating methods, CS and WS, show a decrease in the media peaks up to 99% using CS and 55% using WS, respectively. Proper desalination methods also can increase biological signals by over four times for fatty acids using WS, for example. ToF-SIMS spectral results show chemical compositional changes of the glass exposed in a Paenibacillus polymyxa SCE2 biofilm, indicating its capability to probe microbiologically induced corrosion of solid surfaces. This represents the proper desalination technique to use without significantly altering biofilm structure and substrate for ToF-SIMS analysis. ToF-SIMS spectral results showed chemical compositional changes of the glass exposed by a Paenibacillus bacterial biofilm over 3-month inoculation. Possible MIC products include various phosphate phase molecules not observed in any control samples with the highest percent increases when experimental samples were compared with biofilm control samples.
Collapse
Affiliation(s)
- Gabriel D Parker
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607
- Oak Ridge National Laboratory, Physical Science Directorate, Material Science and Technology Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830
| | - Andrew Plymale
- Pacific Northwest National Laboratory, Energy and Environment Directorate, 902 Battelle Boulevard, Richland, Washington 99354
| | - Jacqueline Hager
- Pacific Northwest National Laboratory, Energy and Environment Directorate, 902 Battelle Boulevard, Richland, Washington 99354
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607
| | - Xiao-Ying Yu
- Oak Ridge National Laboratory, Physical Science Directorate, Material Science and Technology Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830
| |
Collapse
|
2
|
Shen Y, Son J, Yu XY. ToF-SIMS evaluation of PEG-related mass peaks and applications in PEG detection in cosmetic products. Sci Rep 2024; 14:14980. [PMID: 38951137 PMCID: PMC11217440 DOI: 10.1038/s41598-024-65504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.
Collapse
Affiliation(s)
- Yanjie Shen
- College of Biology and Oceanography, Weifang University, 5147 Dongfeng East Street, Weifang, 261061, Shandong, China
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
3
|
Di Costanzo F, Di Dato V, Romano G. Diatom-Bacteria Interactions in the Marine Environment: Complexity, Heterogeneity, and Potential for Biotechnological Applications. Microorganisms 2023; 11:2967. [PMID: 38138111 PMCID: PMC10745847 DOI: 10.3390/microorganisms11122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diatom-bacteria interactions evolved during more than 200 million years of coexistence in the same environment. In this time frame, they established complex and heterogeneous cohorts and consortia, creating networks of multiple cell-to-cell mutualistic or antagonistic interactions for nutrient exchanges, communication, and defence. The most diffused type of interaction between diatoms and bacteria is based on a win-win relationship in which bacteria benefit from the organic matter and nutrients released by diatoms, while these last rely on bacteria for the supply of nutrients they are not able to produce, such as vitamins and nitrogen. Despite the importance of diatom-bacteria interactions in the evolutionary history of diatoms, especially in structuring the marine food web and controlling algal blooms, the molecular mechanisms underlying them remain poorly studied. This review aims to present a comprehensive report on diatom-bacteria interactions, illustrating the different interplays described until now and the chemical cues involved in the communication and exchange between the two groups of organisms. We also discuss the potential biotechnological applications of molecules and processes involved in those fascinating marine microbial networks and provide information on novel approaches to unveiling the molecular mechanisms underlying diatom-bacteria interactions.
Collapse
Affiliation(s)
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (F.D.C.); (G.R.)
| | | |
Collapse
|
4
|
Aslam M, Pei P, Ye P, Li T, Liang H, Zhang Z, Ke X, Chen W, Du H. Unraveling the Diverse Profile of N-Acyl Homoserine Lactone Signals and Their Role in the Regulation of Biofilm Formation in Porphyra haitanensis-Associated Pseudoalteromonas galatheae. Microorganisms 2023; 11:2228. [PMID: 37764072 PMCID: PMC10537045 DOI: 10.3390/microorganisms11092228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria of the red macroalgae Porphyra haitanensis, along with its involvement in biofilm formation and regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL signal molecules produced by epiphytic bacteria. The bacterium isolated from the surface of P. haitanensis was identified as Pseudoalteromonas galatheae by 16s rRNA gene sequencing and screened for AHLs using two AHL reporter strains, Agrobacterium tumefaciens A136 and Chromobacterium violaceum CV026. The crystal violet assay was used for the biofilm-forming phenotype. The inferences revealed that P. galatheae produces four different types of AHL molecules, i.e., C4-HSL, C8-HSL, C18-HSL, and 3-oxo-C16-HSL, and it was observed that its biofilm formation phenotype is regulated by QS molecules. This is the first study providing insights into the QS activity, diverse AHL profile, and regulatory mechanisms that govern the biofilm formation phenotype of P. galatheae. These findings offer valuable insights for future investigations exploring the role of AHL producing epiphytes and biofilms in the life cycle of P. haitanensis.
Collapse
Affiliation(s)
- Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Zezhi Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Xiao Ke
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- STU-UNIVPM Joint Algal Research Center, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|