1
|
Feng Y, Kang Y, Wang Z, Du C, Tan J, Zhao X, Qi G. Ralstonia solanacearum infection induces tobacco root to secrete chemoattractants to recruit antagonistic bacteria and defensive compounds to inhibit pathogen. PEST MANAGEMENT SCIENCE 2024. [PMID: 39673161 DOI: 10.1002/ps.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Plant root exudates play crucial roles in maintaining the structure and function of the whole belowground ecosystem and regulating the interactions between roots and soil microorganisms. Ralstonia solanacearum causes bacterial wilt disease in many plants, while root exudate-mediated inhibition of pathogen infection is poorly understood. Here, we characterize the chemical divergence between root exudates of healthy and diseased tobacco plants and the effects of that variability on the rhizosphere microbial community and the occurrence of bacterial wilt. RESULTS Compared with the healthy plants, root exudates in diseased plants showed distinct exudation patterns and metabolite profiles including increased amounts of flavonoids, phenylpropanoids, terpenoids and defense-related hormones, as well as distinct bacterial community composition, as illustrated by an increased abundance of Ralstonia and decreased abundances of Bacillus and Streptomyces in diseased plants rhizosphere. Pathogen infection stimulated roots to secrete more defensive compounds to inhibit pathogen growth. Change of root exudates modulated rhizosphere microbial community. Specific root exudates could benefit plants by attracting antagonistic Bacillus amyloliquefaciens and inhibiting pathogens. Bacillus amyloliquefaciens could utilize specific root exudates as carbon sources. Benzyl cinnamatel promoted the biofilm formation and colonization of B. amyloliquefaciens on roots. CONCLUSION To defend against pathogen invasion, tobacco plants recruited antagonistic and plant growth-promoting rhizobacteria to the rhizosphere by modifying root exudate profiles. Specific signal molecules are recommended to recruit beneficial microorganisms for controlling bacterial wilt. The results provide insights concerning the metabolic divergence of root exudates integral to understanding root-microorganism interaction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue Kang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhibo Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Tan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Roslund MI, Galitskaya P, Saarenpää M, Sinkkonen A. Cultivar-dependent differences in plant bud microbiome and functional gene pathways in woody plants commonly used in urban green space. Lett Appl Microbiol 2024; 77:ovae110. [PMID: 39544117 DOI: 10.1093/lambio/ovae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Plant richness and microbiota have been associated with plant health; hardly any studies have investigated how plant taxa differs in microbiota in the context of human health. We investigated the microbial differences in buds of 83 woody plant taxa used in urban green spaces in hemiboreal climate, using 16S rRNA and whole metagenome shotgun sequencing. Bud microbial community was the richest in Cotoneaster Nanshan and C. integerrimus, and Malus domestica cultivars "Sandra" and "Lobo" and poorest in Ribes glandulosum. Metagenomic shotgun sequencing of two M. domestica and four Ribes varieties confirmed differences in taxa in bud microbiota and indicated higher siderophore synthesis in Malus. Microbial richness, including bacteria, archaea, and viruses, and functional richness of gene pathways was higher in Malus compared to Ribes. The 10 most abundant amplicon sequence units, often referred as species, belonged to the phylum Proteobacteria. The differences between plant taxa were evident in classes Alpha- and Gammaproteobacteria, known for potential human health benefits. Since environmental microbiota contributes to human microbiota and immunoregulation, horticultural cultivars hosting rich microbiota may have human health benefits. Further studies are needed to confirm the effectiveness of microbially-oriented plant selection in optimizing human microbiota and planetary health.
Collapse
Affiliation(s)
- Marja I Roslund
- Natural Resources Institute Finland Luke, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Polina Galitskaya
- Research Institute for Environmental Studies, 2775-083 Parede, Portugal
| | - Mika Saarenpää
- Natural Resources Institute Finland Luke, Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland Luke, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
3
|
Teng K, Zhou Y, Mao H, Long X, Zhang S, Ma J, Meng D, Yin H, Xiao Y. Synergistic effects of yeast and plant growth-promoting bacteria on Tobacco growth and soil-borne disease suppression: evidence from pot and field experiments. FRONTIERS IN PLANT SCIENCE 2024; 15:1489112. [PMID: 39554525 PMCID: PMC11563955 DOI: 10.3389/fpls.2024.1489112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Background Tobacco (Nicotiana tabacum L.) is an important economic crop, and the use of plant growth-promoting bacteria (PGPB) to enhance its growth and suppress soil-borne diseases has garnered considerable research interest. However, the potential of yeast to augment the growth-promoting and disease-suppressing effects of PGPB on tobacco remains unclear. Methods This study investigated the effects of Pichia sp. microbial fertilizer (J1), PGPB-Klebsiella oxytoca microbial fertilizer (ZS4), and their composite fertilizer (JZ) on tobacco growth indexes, soil properties, and soil microbial community through a pot experiment. Additionally, field experiments were conducted to further assess the efficacy of the composite microbial fertilizer on tobacco growth and the incidences of soil-borne diseases, including tobacco bacterial wilt (TBW) and tobacco black shank (TBS). Results and discussions In the pot experiment, application of the microbial fertilizers significantly enhanced soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) levels. Compared to the control group (CK), J1, ZS4, and JZ microbial fertilizers significantly promoted tobacco growth, and the composite microbial fertilizers demonstrated superior to the individual microbial fertilizers. We found that the application of microbial fertilizer led to significant alterations in the structure and composition of the bacterial and fungal communities based on the high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions. The bacterial and fungal diversity indexes showed a decreasing trend. Key microorganisms such as Sphingomonas, Kitasatospora, Nitrosospira, Mortierella, and Trichoderma were identified as influential in regulating soil physicochemical parameters to enhance tobacco growth. Functional prediction further demonstrated a significant increase in the relative abundances of certain enzymes, including Alkaline phosphatase, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), and Peroxidase, as well as antimicrobial substances like Tetracycline, Isoquinoline alkaloid, and Phenylpropanoids, following inoculation with the fertilizer. Besides, field experiments revealed that the JZ fertilizer significantly promoted tobacco growth and reduced the incidence of TBW and TBS, indicating its potential for further application in tobacco cultivation.
Collapse
Affiliation(s)
- Kai Teng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Mao
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Xianjun Long
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Sheng Zhang
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Center for the Creation of Chinese Herbal Medicine Varieties, Yuelushan Laboratory, Changsha, China
| |
Collapse
|
4
|
Wei L, Zhu J, Zhao D, Pei Y, Guo L, Guo J, Guo Z, Cui H, Li Y, Gao J. Microbial fungicides can positively affect aubergine photosynthetic properties, soil enzyme activity and microbial community structure. PeerJ 2024; 12:e17620. [PMID: 38952982 PMCID: PMC11216198 DOI: 10.7717/peerj.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.
Collapse
Affiliation(s)
- Longxue Wei
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jinying Zhu
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Dongbo Zhao
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Yanting Pei
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Lianghai Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jianjun Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Zhihui Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Huini Cui
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Yongjun Li
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jiansheng Gao
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| |
Collapse
|
5
|
García-Serquén AL, Chumbe-Nolasco LD, Navarrete AA, Girón-Aguilar RC, Gutiérrez-Reynoso DL. Traditional potato tillage systems in the Peruvian Andes impact bacterial diversity, evenness, community composition, and functions in soil microbiomes. Sci Rep 2024; 14:3963. [PMID: 38368478 PMCID: PMC10874408 DOI: 10.1038/s41598-024-54652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
The soil microbiome, a crucial component of agricultural ecosystems, plays a pivotal role in crop production and ecosystem functioning. However, its response to traditional tillage systems in potato cultivation in the Peruvian highlands is still far from understood. Here, ecological and functional aspects of the bacterial community were analyzed based on soil samples from two traditional tillage systems: 'chiwa' (minimal tillage) and 'barbecho' (full tillage), in the Huanuco region of the Peruvian central Andes. Similar soil bacterial community composition was shown for minimal tillage system, but it was heterogeneous for full tillage system. This soil bacterial community composition under full tillage system may be attributed to stochastic, and a more dynamic environment within this tillage system. 'Chiwa' and 'barbecho' soils harbored distinct bacterial genera into their communities, indicating their potential as bioindicators of traditional tillage effects. Functional analysis revealed common metabolic pathways in both tillage systems, with differences in anaerobic pathways in 'chiwa' and more diverse pathways in 'barbecho'. These findings open the possibilities to explore microbial bioindicators for minimal and full tillage systems, which are in relationship with healthy soil, and they can be used to propose adequate tillage systems for the sowing of potatoes in Peru.
Collapse
Affiliation(s)
- Aura L García-Serquén
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, 15024, Lima, Peru.
| | - Lenin D Chumbe-Nolasco
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, 15024, Lima, Peru
| | - Acacio Aparecido Navarrete
- Graduate Program in Environmental Sciences, Brazil University (UB), Estrada Projetada F1, Fazenda Santa Rita, Fernandópolis, São Paulo, 15613-899, Brazil
| | - R Carolina Girón-Aguilar
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, 15024, Lima, Peru
| | - Dina L Gutiérrez-Reynoso
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, 15024, Lima, Peru
| |
Collapse
|