1
|
Cheng Y, Zhang X, Zhang W, Dong J, Ma Y, Zhang A, Han F, Peng H, Kong W. Microbial Community Structure and Diversity of Endophytic Bacteria and Fungi in the Healthy and Diseased Roots of Angelica sinensis, and Identification of Pathogens Causing Root Rot. Microorganisms 2025; 13:417. [PMID: 40005782 PMCID: PMC11858288 DOI: 10.3390/microorganisms13020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Angelica sinensis (Oliv.) Diels is an important traditional Chinese herbal medicine, and its main medicinal part is the root. In recent years, root rot has become one of the bottlenecks hindering the healthy and green development of Angelica cultivation due to the inappropriate application of chemical fertilizers, pesticides, plant growth regulators, and continuous cropping. In this study, high-throughput sequencing technology was adopted to reveal the differences in the community structure and diversity of endophytic bacteria and fungi in the roots of healthy and diseased A. sinensis. The results showed that the diversity index of endophytic bacterial communities was significantly higher in healthy root than in diseased Angelica root systems. There was a significant difference in endophytic fungal community diversity only at the m1 sampling site. There was a significant difference in the β-diversity of bacterial communities, but not of fungi. In terms of community composition, Proteobacteria was the dominant phylum of bacteria, and Sphingobium and Pseudomonas were the dominant genera; Ascomycota and Basidiomycota were the dominant phyla of fungi, and Plectosphaerella, Paraphoma, and Fusarium were the dominant genera. In addition, the relative abundance of the genera Sphingobium and Pseudomonas was higher in healthy roots, while Fusarium was higher in diseased samples. Among the five pathogens isolated from diseased root, four strains were Fusarium sp., and one was Paraphoma chrysanthemicola, which is reported for the first time. Our findings indicate that the endophyte community structure of A. sinensis infected with root rot changed significantly compared with healthy plants, and Fusarium is an important pathogenic factor, which provides a valuable microbiological basis for the targeted biocontrol of Angelica root rot.
Collapse
Affiliation(s)
- Yaya Cheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Xiaoyun Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Wenwen Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Jianmei Dong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Yanjun Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Aimei Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Fujun Han
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (F.H.); (H.P.)
| | - Hai Peng
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (F.H.); (H.P.)
| | - Weibao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
- Gansu Engineering Research Center of High Value-Added Utilization of Distinctive Agricultural Products, Lanzhou 730070, China
| |
Collapse
|
2
|
Zhou J, Liang J, Zhang X, Wang F, Qu Z, Gao T, Yao Y, Luo Y. Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect. J Fungi (Basel) 2025; 11:105. [PMID: 39997399 PMCID: PMC11856043 DOI: 10.3390/jof11020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Pepper Phytophthora blight caused by Phytophthora capsici results in substantial losses in global pepper cultivation. The use of biocontrol agents with the dual functions of disease suppression and crop growth promotion is a green and sustainable way of managing this pathogen. In this study, six biocontrol strains of Trichoderma with high antagonistic activity against P. capsici were isolated and screened from the rhizosphere soil of healthy peppers undergoing long-term continuous cultivation. Morphological identification and molecular biological identification revealed that strains 2213 and 2221 were T. harzianum, strains 5111, 6311, and 6321 were T. brevicompactum, and strain 7111 was T. virens. The results showed that T. brevicompactum 6311 had the greatest inhibitory effect against P. capsici. The inhibition rate of 6311 on the mycelial growth of P. capsici was 82.22% in a double-culture test, whereas it reached 100% in a fermentation liquid culture test. Meanwhile, the pepper fruit tests showed that 6311 was 29% effective against P. capsici on pepper, and a potting test demonstrated that the preventive and controlling effect of 6311 on pepper epidemics triggered by P. capsici was 55.56%. The growth-promoting effect, germination potential, germination rate, radicle-embryonic axis length, germination index, and fresh weight of peppers cultured in the 6311 fermentation broth were significantly increased compared with the results for the control group. Scanning electron microscopy revealed that 6311 achieved the parasitism of P. capsici, producing siderophores and the growth hormone indoleacetic acid (IAA) to achieve disease-suppressive and growth-promoting functions. Transcriptomic results indicated that genes encoding proteins involved in plant disease resistance, namely flavanone 3-hydroxylase (F3H) and growth transcription factor (AUX22), were generally upregulated after the application of 6311. This study demonstrated that 6311 exhibits significant bioprotective and growth-promoting functions.
Collapse
Affiliation(s)
- Jien Zhou
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China;
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.L.); (X.Z.); (F.W.); (Z.Q.)
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.L.); (X.Z.); (F.W.); (Z.Q.)
| | - Xueyan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.L.); (X.Z.); (F.W.); (Z.Q.)
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.L.); (X.Z.); (F.W.); (Z.Q.)
| | - Zheng Qu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.L.); (X.Z.); (F.W.); (Z.Q.)
| | - Tongguo Gao
- College of Life Sciences, Hebei Agricultural University, Baoding 071002, China;
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.L.); (X.Z.); (F.W.); (Z.Q.)
| | - Yanli Luo
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
3
|
Deng Y, Wu W, Huang X, Yang X, Yu Y, Zhang Z, Hu Z, Zhou X, Zhou K, Liu Y, Zhang L. Characterization of rhizosphere bacterial communities in oilseed rape cultivars with different susceptibility to Plasmodiophora brassicae infection. FRONTIERS IN PLANT SCIENCE 2025; 15:1496770. [PMID: 39834703 PMCID: PMC11743679 DOI: 10.3389/fpls.2024.1496770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of Plasmodiophora brassicae among the four different clubroot susceptibility cultivars of oilseed rape (Brassica napus). Our results revealed obvious differences in the responses of rhizosphere bacterial community to the P. brassicae infection between the four cultivars of oilseed rape. Several bacterial genera that are associated with the nitrogen cycle, including Limnobacter, Thiobacillus, Anaeromyxobacter, Nitrosomonas, Tumebacillus, and Halomonas, showed significantly different changes between susceptible and resistant cultivars in the presence of P. brassicae infection. Moreover, increased connectedness and robustness were exhibited in the rhizosphere bacterial community co-occurrence network in clubroot-susceptible cultivars that were infected with P. brassicae, while only slight changes were observed in clubroot-resistant cultivars. Metagenomic analysis of microbial metabolism also indicated differences in the rhizosphere bacterial community between susceptible and resistant cultivars that were infected with P. brassicae. Functional analysis of the nitrogen cycle showed that genes related to nitrification (nxrB) were upregulated in susceptible cultivars, while genes related to assimilatory nitrate reduction (nasA, narB, and nirA) were upregulated in resistant cultivars that were infected with P. brassicae. These findings indicate that the synthesis and assimilation process of NO3 - content were promoted in susceptible and resistant cultivars, respectively. Our study revealed differences in the characteristics of rhizosphere bacterial communities in response to P. brassicae infection between clubroot-susceptible and clubroot-resistant cultivars as well as the potential impact of these differences on the plant-P. brassicae interaction.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Wenxian Wu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoqing Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yaoyin Yu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhongmei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zijin Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiquan Zhou
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
4
|
Jia X, Lin S, Zhang Q, Wang Y, Hong L, Li M, Zhang S, Wang T, Jia M, Luo Y, Ye J, Wang H. The Ability of Different Tea Tree Germplasm Resources in South China to Aggregate Rhizosphere Soil Characteristic Fungi Affects Tea Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:2029. [PMID: 39124147 PMCID: PMC11314174 DOI: 10.3390/plants13152029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
It is generally recognized that the quality differences in plant germplasm resources are genetically determined, and that only a good "pedigree" can have good quality. Ecological memory of plants and rhizosphere soil fungi provides a new perspective to understand this phenomenon. Here, we selected 45 tea tree germplasm resources and analyzed the rhizosphere soil fungi, nutrient content and tea quality. We found that the ecological memory of tea trees for soil fungi led to the recruitment and aggregation of dominant fungal populations that were similar across tea tree varieties, differing only in the number of fungi. We performed continuous simulation and validation to identify four characteristic fungal genera that determined the quality differences. Further analysis showed that the greater the recruitment and aggregation of Saitozyma and Archaeorhizomyces by tea trees, the greater the rejection of Chaetomium and Trechispora, the higher the available nutrient content in the soil and the better the tea quality. In summary, our study presents a new perspective, showing that ecological memory between tea trees and rhizosphere soil fungi leads to differences in plants' ability to recruit and aggregate characteristic fungi, which is one of the most important determinants of tea quality. The artificial inoculation of rhizosphere fungi may reconstruct the ecological memory of tea trees and substantially improve their quality.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan 364012, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Yuhua Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Hong
- College of Life Science, Longyan University, Longyan 364012, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhe Li
- College of Life Science, Longyan University, Longyan 364012, China
| | - Shuqi Zhang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Tingting Wang
- College of Life Science, Longyan University, Longyan 364012, China
| | - Miao Jia
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Yangxin Luo
- College of Life Science, Longyan University, Longyan 364012, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan 354300, China; (X.J.)
- College of Life Science, Longyan University, Longyan 364012, China
| |
Collapse
|
5
|
Liu Y, Lai J, Sun X, Huang L, Sheng Y, Zhang Q, Zeng H, Zhang Y, Ye P, Wei S. Comparative Metagenomic Analysis Reveals Rhizosphere Microbiome Assembly and Functional Adaptation Changes Caused by Clubroot Disease in Chinese Cabbage. Microorganisms 2024; 12:1370. [PMID: 39065138 PMCID: PMC11278620 DOI: 10.3390/microorganisms12071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Clubroot is a major disease and severe threat to Chinese cabbage, and it is caused by the pathogen Plasmodiophora brassicae Woron. This pathogen is an obligate biotrophic protist and can persist in soil in the form of resting spores for more than 18 years, which can easily be transmitted through a number of agents, resulting in significant economic losses to global Chinese cabbage production. Rhizosphere microbiomes play fundamental roles in the occurrence and development of plant diseases. The changes in the rhizosphere microorganisms could reveal the severity of plant diseases and provide the basis for their control. Here, we studied the rhizosphere microbiota after clubroot disease infections with different severities by employing metagenomic sequencing, with the aim of exploring the relationships between plant health, rhizosphere microbial communities, and soil environments; then, we identified potential biomarker microbes of clubroot disease. The results showed that clubroot disease severity significantly affected the microbial community composition and structure of the rhizosphere soil, and microbial functions were also dramatically influenced by it. Four different microbes that had great potential in the biocontrol of clubroot disease were identified from the obtained results; they were the genera Pseudomonas, Gemmatimonas, Sphingomonas, and Nocardioides. Soil pH, organic matter contents, total nitrogen, and cation exchange capacity were the major environmental factors modulating plant microbiome assembly. In addition, microbial environmental information processing was extremely strengthened when the plant was subjected to pathogen invasion, but weakened when the disease became serious. In particular, oxidative phosphorylation and glycerol-1-phosphatase might have critical functions in enhancing Chinese cabbage's resistance to clubroot disease. This work revealed the interactions and potential mechanisms among Chinese cabbage, soil environmental factors, clubroot disease, and microbial community structure and functions, which may provide a novel foundation for further studies using microbiological or metabolic methods to develop disease-resistant cultivation technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pengsheng Ye
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences/The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Chengdu 610300, China; (Y.L.); (J.L.); (X.S.); (L.H.); (Y.S.); (Q.Z.); (H.Z.); (Y.Z.)
| | - Shugu Wei
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences/The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Chengdu 610300, China; (Y.L.); (J.L.); (X.S.); (L.H.); (Y.S.); (Q.Z.); (H.Z.); (Y.Z.)
| |
Collapse
|
6
|
Yang B, Feng W, Zhou W, He K, Yang Z. Association between Soil Physicochemical Properties and Bacterial Community Structure in Diverse Forest Ecosystems. Microorganisms 2024; 12:728. [PMID: 38674672 PMCID: PMC11052384 DOI: 10.3390/microorganisms12040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Although the importance of the soil bacterial community for ecosystem functions has long been recognized, there is still a limited understanding of the associations between its community composition, structure, co-occurrence patterns, and soil physicochemical properties. The objectives of the present study were to explore the association between soil physicochemical properties and the composition, diversity, co-occurrence network topological features, and assembly mechanisms of the soil bacterial community. Four typical forest types from Liziping Nature Reserve, representing evergreen coniferous forest, deciduous coniferous forest, mixed conifer-broadleaf forest, and its secondary forest, were selected for this study. The soil bacterial community was analyzed using Illumina MiSeq sequencing of 16S rRNA genes. Nonmetric multidimensional scaling was used to illustrate the clustering of different samples based on Bray-Curtis distances. The associations between soil physicochemical properties and bacterial community structure were analyzed using the Mantel test. The interactions among bacterial taxa were visualized with a co-occurrence network, and the community assembly processes were quantified using the Beta Nearest Taxon Index (Beta-NTI). The dominant bacterial phyla across all forest soils were Proteobacteria (45.17%), Acidobacteria (21.73%), Actinobacteria (8.75%), and Chloroflexi (5.06%). Chao1 estimator of richness, observed ASVs, faith-phylogenetic diversity (faith-PD) index, and community composition were distinguishing features of the examined four forest types. The first two principal components of redundancy analysis explained 41.33% of the variation in the soil bacterial community, with total soil organic carbon, soil moisture, pH, total nitrogen, carbon/nitrogen (C/N), carbon/phosphorous (C/P), and nitrogen/phosphorous (N/P) being the main soil physicochemical properties shaping soil bacterial communities. The co-occurrence network structure in the mixed forest was more complex compared to that in pure forests. The Beta-NTI indicated that the bacterial community assembly of the four examined forest types was collaboratively influenced by deterministic and stochastic ecological processes.
Collapse
Affiliation(s)
- Bing Yang
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| | - Wanju Feng
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| | - Wenjia Zhou
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| | - Ke He
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637002, China;
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| |
Collapse
|