1
|
Prioux C, Ferrier-Pages C, Deter J, Tignat-Perrier R, Guilbert A, Ballesta L, Allemand D, van de Water JAJM. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Anim Microbiome 2024; 6:62. [PMID: 39497183 PMCID: PMC11533408 DOI: 10.1186/s42523-024-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Corals are the foundational species of coral reefs and coralligenous ecosystems. Their success has been linked to symbioses with microorganisms, and a coral host and its symbionts are therefore considered a single entity, called the holobiont. This suggests that there may be evolutionary links between corals and their microbiomes. While there is evidence of phylosymbiosis in scleractinian hexacorals, little is known about the holobionts of Alcyonacean octocorals. RESULTS 16S rRNA gene amplicon sequencing revealed differences in the diversity and composition of bacterial communities associated with octocorals collected from the mesophotic zones of the Mediterranean and Red Seas. The low diversity and consistent dominance of Endozoicomonadaceae and/or Spirochaetaceae in the bacterial communities of Mediterranean octocorals suggest that these corals may have a shared evolutionary history with their microbiota. Phylosymbiotic signals were indeed detected and cophylogeny in associations between several bacterial strains, particularly those belonging to Endozoicomonadaceae or Spirochaetaceae, and coral species were identified. Conversely, phylosymbiotic patterns were not evident in Red Sea octocorals, likely due to the high bacterial taxonomic diversity in their microbiota, but cophylogeny in associations between certain coral and bacterial species was observed. Noteworthy were the associations with Endozoicomonadaceae, suggesting a plausible evolutionary link that warrants further investigations to uncover potential underlying patterns. CONCLUSIONS Overall, our findings emphasize the importance of Endozoicomonadaceae and Spirochaetaceae in coral symbiosis and the significance of exploring host-microbiome interactions in mesophotic ecosystems for a comprehensive understanding of coral-microbiome evolutionary history.
Collapse
Affiliation(s)
- C Prioux
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - C Ferrier-Pages
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
| | - J Deter
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095, Montpellier, France
| | - R Tignat-Perrier
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - A Guilbert
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - L Ballesta
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - J A J M van de Water
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Department of Estuarine Delta Systems, Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands.
| |
Collapse
|
2
|
Wheatley SK, Cartmell C, Madadian E, Badr S, Haltli BA, Kerr RG, Ahmadi A. Microfabrication of a micron-scale microbial-domestication pod for in situ cultivation of marine bacteria. RSC Adv 2022; 12:28123-28127. [PMID: 36320234 PMCID: PMC9527566 DOI: 10.1039/d2ra05420e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
Abstract
Through the hyphenation of microfabrication, microfluidics and microbiology, we report the development of a μMicrobial-Domestication Pod (μMD Pod). This in situ cultivation device facilitates cell signaling from neighbouring species and interactions with environmental stimuli for marine bacterial growth to overcome current barriers faced by standard laboratory cultivation methods.
Collapse
Affiliation(s)
- Sydney K. Wheatley
- Faculty of Sustainable Design Engineering, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada,Department of Mechanical Engineering, École de technologie supérieure (ÉTS)MontrealQCH3C 1K3Canada
| | - Christopher Cartmell
- Department of Chemistry, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada
| | - Elias Madadian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada,Department of Mechanical Engineering, École de technologie supérieure (ÉTS)MontrealQCH3C 1K3Canada
| | - Sara Badr
- Faculty of Sustainable Design Engineering, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada,Department of Mechanical Engineering, École de technologie supérieure (ÉTS)MontrealQCH3C 1K3Canada
| | - Bradley A. Haltli
- Nautilus Biosciences Croda, Regis and Joan Duffy Research Centre550 University AvenueCharlottetownPEC1A 4P3Canada,Department of Biomedical Science, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada
| | - Russell G. Kerr
- Department of Chemistry, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada,Nautilus Biosciences Croda, Regis and Joan Duffy Research Centre550 University AvenueCharlottetownPEC1A 4P3Canada,Department of Biomedical Science, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada
| | - Ali Ahmadi
- Faculty of Sustainable Design Engineering, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada,Department of Mechanical Engineering, École de technologie supérieure (ÉTS)MontrealQCH3C 1K3Canada,Department of Biomedical Science, University of Prince Edward Island550 University AvenueCharlottetownPEC1A 4P3Canada
| |
Collapse
|
3
|
Corinaldesi C, Varrella S, Tangherlini M, Dell'Anno A, Canensi S, Cerrano C, Danovaro R. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153701. [PMID: 35134420 DOI: 10.1016/j.scitotenv.2022.153701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michael Tangherlini
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Canensi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
4
|
Haydon TD, Suggett DJ, Siboni N, Kahlke T, Camp EF, Seymour JR. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. MICROBIAL ECOLOGY 2022; 83:1073-1087. [PMID: 34331071 DOI: 10.1007/s00248-021-01823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Emma F Camp
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
5
|
Influence of temperature changes on symbiotic Symbiodiniaceae and bacterial communities’ structure: an experimental study on soft coral Sarcophyton trocheliophorum (Anthozoa: Alcyoniidae). JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractIt is well concluded that microbial composition and diversity of coral species can be affected under temperature alterations. However, the interaction of environmental accumulation of corals and temperature stress on symbiotic Symbiodiniaceae and bacterial communities are rarely studied. In this study, two groups of soft coral Sarcophyton trocheliophorum were cultured under constant (26 °C) and inconstant (22 °C to 26 °C) temperature conditions for 30 days as control treatments. After that, water was cooled rapidly to decrease to 20 °C in 24 h. The results of diversity analysis showed that symbiotic Symbiodiniaceae and bacterial communities had a significant difference between the two accumulated groups. The principal coordinate analyses confirmed that symbiotic Symbiodiniaceae and bacterial communities of both control treatments were clustered into two groups. Our results evidenced that rapid cooling stress could not change symbiotic Symbiodiniaceae and bacterial communities’ composition. On the other hand, cooling stress could alter only bacterial communities in constant group. In conclusion, our study represents a clear relationship between environmental accumulation and the impact of short-term cooling stress in which microbial composition structure can be affected by early adaptation conditions.
Collapse
|
6
|
Marchbank DH, Ptycia-Lamky VC, Decken A, Haltli BA, Kerr RG. Guanahanolide A, a Meroterpenoid with a Sesterterpene Skeleton from Coral-Derived Streptomyces sp. Org Lett 2020; 22:6399-6403. [DOI: 10.1021/acs.orglett.0c02208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Douglas H. Marchbank
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Vernon C. Ptycia-Lamky
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB, Canada E3B 5A3
| | - Bradley A. Haltli
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Russell G. Kerr
- Nautilus Biosciences CRODA, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| |
Collapse
|
7
|
Chanana S, Thomas CS, Zhang F, Rajski SR, Bugni TS. hcapca: Automated Hierarchical Clustering and Principal Component Analysis of Large Metabolomic Datasets in R. Metabolites 2020; 10:E297. [PMID: 32708222 PMCID: PMC7407629 DOI: 10.3390/metabo10070297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial natural product discovery programs face two main challenges today: rapidly prioritizing strains for discovering new molecules and avoiding the rediscovery of already known molecules. Typically, these problems have been tackled using biological assays to identify promising strains and techniques that model variance in a dataset such as PCA to highlight novel chemistry. While these tools have shown successful outcomes in the past, datasets are becoming much larger and require a new approach. Since PCA models are dependent on the members of the group being modeled, large datasets with many members make it difficult to accurately model the variance in the data. Our tool, hcapca, first groups strains based on the similarity of their chemical composition, and then applies PCA to the smaller sub-groups yielding more robust PCA models. This allows for scalable chemical comparisons among hundreds of strains with thousands of molecular features. As a proof of concept, we applied our open-source tool to a dataset with 1046 LCMS profiles of marine invertebrate associated bacteria and discovered three new analogs of an established anticancer agent from one promising strain.
Collapse
Affiliation(s)
| | | | | | | | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (C.S.T.); (F.Z.); (S.R.R.)
| |
Collapse
|
8
|
Cleary DFR, Polónia ARM, Reijnen BT, Berumen ML, de Voogd NJ. Prokaryote Communities Inhabiting Endemic and Newly Discovered Sponges and Octocorals from the Red Sea. MICROBIAL ECOLOGY 2020; 80:103-119. [PMID: 31932882 DOI: 10.1007/s00248-019-01465-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we assessed prokaryotic communities of demosponges, a calcareous sponge, octocorals, sediment and seawater in coral reef habitat of the central Red Sea, including endemic species and species new to science. Goals of the study were to compare the prokaryotic communities of demosponges with the calcareous sponge and octocorals and to assign preliminary high microbial abundance (HMA) or low microbial abundance (LMA) status to the sponge species based on compositional trait data. Based on the compositional data, we were able to assign preliminary LMA or HMA status to all sponge species. Certain species, however, had traits of both LMA and HMA species. For example, the sponge Ectyoplasia coccinea, which appeared to be a LMA species, had traits, including a relatively high abundance of Chloroflexi members, that were more typical of HMA species. This included dominant OTUs assigned to two different classes within the Chloroflexi. The calcareous sponge clustered together with seawater, the known LMA sponge Stylissa carteri and other presumable LMA species. The two dominant OTUs of this species were assigned to the Deltaproteobacteria and had no close relatives in the GenBank database. The octocoral species in the present study had prokaryotic communities that were distinct from sediment, seawater and all sponge species. These were characterised by OTUs assigned to the orders Rhodospirillales, Cellvibrionales, Spirochaetales and the genus Endozoicomonas, which were rare or absent in samples from other biotopes.
Collapse
Affiliation(s)
- D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A R M Polónia
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - B T Reijnen
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - M L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - N J de Voogd
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Environmental Sciences, Environmental Biology Department, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
McCauley M, Jackson CR, Goulet TL. Microbiomes of Caribbean Octocorals Vary Over Time but Are Resistant to Environmental Change. Front Microbiol 2020; 11:1272. [PMID: 32595627 PMCID: PMC7304229 DOI: 10.3389/fmicb.2020.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The bacterial microbiome is an essential component of many corals, although knowledge of the microbiomes in scleractinian corals far exceeds that for octocorals. This study characterized the bacterial communities present in shallow water Caribbean gorgonian octocorals over time and space, in addition to determining the bacterial assemblages in gorgonians exposed to environmental perturbations. We found that seven shallow water Caribbean gorgonian species maintained distinct microbiomes and predominantly harbored two bacterial genera, Mycoplasma and Endozoicomonas. Representatives of these taxa accounted for over 70% of the sequences recovered, made up the three most common operational taxonomic units (OTUs), and were present in most of the gorgonian species. Gorgonian species sampled in different seasons and/or in different years, exhibited significant shifts in the abundances of these bacterial OTUs, though there were few changes to overall bacterial diversity, or to the specific OTUs present. These shifts had minimal impact on the relative abundance of inferred functional proteins within the gorgonian corals. Sequences identified as Escherichia were ubiquitous in gorgonian colonies sampled from a lagoon but not in colonies sampled from a back reef. Exposure to increased temperature and/or ultraviolet radiation (UVR) or nutrient enrichment led to few significant changes in the gorgonian coral microbiomes. While there were some shifts in the abundance of the prevalent bacteria, more commonly observed was “microbial switching” between different OTUs identified within the same bacterial genus. The relative stability of gorgonian coral bacterial microbiome may potentially explain some of the resistance and resilience of Caribbean gorgonian corals against changing environmental conditions.
Collapse
Affiliation(s)
- Mark McCauley
- Department of Biology, The University of Mississippi, University, MS, United States
| | - Colin R Jackson
- Department of Biology, The University of Mississippi, University, MS, United States
| | - Tamar L Goulet
- Department of Biology, The University of Mississippi, University, MS, United States
| |
Collapse
|
10
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Jomchai N, Sonthirod C, Naktang C, Kongkachana W, Tangphatsornruang S. Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. Microbiologyopen 2019; 8:e935. [PMID: 31544365 PMCID: PMC6925168 DOI: 10.1002/mbo3.935] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/01/2023] Open
Abstract
The coral holobiont is a complex ecosystem consisting of coral animals and a highly diverse consortium of associated microorganisms including algae, fungi, and bacteria. Several studies have highlighted the importance of coral‐associated bacteria and their potential roles in promoting the host fitness and survival. Recently, dynamics of coral‐associated microbiomes have been demonstrated to be linked to patterns of coral heat tolerance. Here, we examined the effect of elevated seawater temperature on the structure and diversity of bacterial populations associated with Porites lutea, using full‐length 16S rRNA sequences obtained from Pacific Biosciences circular consensus sequencing. We observed a significant increase in alpha diversity indices and a distinct shift in microbiome composition during thermal stress. There was a marked decline in the apparent relative abundance of Gammaproteobacteria family Endozoicomonadaceae after P. lutea had been exposed to elevated seawater temperature. Concomitantly, the bacterial community structure shifted toward the predominance of Alphaproteobacteria family Rhodobacteraceae. Interestingly, we did not observe an increase in relative abundance of Vibrio‐related sequences in our heat‐stressed samples even though the appearance of Vibrio spp. has often been detected in parallel with the increase in the relative abundance of Rhodobacteraceae during thermal bleaching in other coral species. The ability of full‐length 16S rRNA sequences in resolving taxonomic uncertainty of associated bacteria at a species level enabled us to identify 24 robust indicator bacterial species for thermally stressed corals. It is worth noting that the majority of those indicator species were members of the family Rhodobacteraceae. The comparison of bacterial community structure and diversity between corals in ambient water temperature and thermally stressed corals may provide a better understanding on how bacteria symbionts contribute to the resilience of their coral hosts to ocean warming.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Nukoon Jomchai
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
11
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
13
|
Chanana S, Thomas CS, Braun DR, Hou Y, Wyche TP, Bugni TS. Natural Product Discovery Using Planes of Principal Component Analysis in R (PoPCAR). Metabolites 2017; 7:metabo7030034. [PMID: 28703778 PMCID: PMC5618319 DOI: 10.3390/metabo7030034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Rediscovery of known natural products hinders the discovery of new, unique scaffolds. Efforts have mostly focused on streamlining the determination of what compounds are known vs. unknown (dereplication), but an alternative strategy is to focus on what is different. Utilizing statistics and assuming that common actinobacterial metabolites are likely known, focus can be shifted away from dereplication and towards discovery. LC-MS-based principal component analysis (PCA) provides a perfect tool to distinguish unique vs. common metabolites, but the variability inherent within natural products leads to datasets that do not fit ideal standards. To simplify the analysis of PCA models, we developed a script that identifies only those masses or molecules that are unique to each strain within a group, thereby greatly reducing the number of data points to be inspected manually. Since the script is written in R, it facilitates integration with other metabolomics workflows and supports automated mass matching to databases such as Antibase.
Collapse
Affiliation(s)
- Shaurya Chanana
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Chris S Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Doug R Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Yanpeng Hou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Thomas P Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
- Exploratory Science Center, Merck & Co., 320 Bent St., Cambridge, MA 02141, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol 2017; 25:125-140. [DOI: 10.1016/j.tim.2016.11.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
15
|
Kellogg CA, Ross SW, Brooke SD. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ 2016; 4:e2529. [PMID: 27703865 PMCID: PMC5047221 DOI: 10.7717/peerj.2529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023] Open
Abstract
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey , St. Petersburg , FL , United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington , Wilmington , NC , United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University , St. Teresa , FL , United States of America
| |
Collapse
|