1
|
Boukeroui Y, González-Siso MI, DeCastro ME, Arab M, Aissaoui N, Nas F, Saibi ANE, Klouche Khelil N. Characterization, whole-genome sequence analysis, and protease production of a new thermophilic Bacillus licheniformis strain isolated from Debagh hot spring, Algeria. Int Microbiol 2024:10.1007/s10123-024-00569-9. [PMID: 39129036 DOI: 10.1007/s10123-024-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
A new thermophilic strain, designated as Bacillus sp. LMB3902, was isolated from Hammam Debagh, the hottest spring in Algeria (up to 98 °C). This isolate showed high protease production in skim milk media at 55 °C and exhibited significant specific protease activity by using azocasein as a substrate (157.50 U/mg). Through conventional methods, chemotaxonomic characteristics, 16S rRNA gene sequencing, and comparative genomic analysis with the closely related strain Bacillus licheniformis DSM 13 (ATCC 14580 T), the isolate Bacillus sp. LMB3902 was identified as a potentially new strain of Bacillus licheniformis. In addition, the gene functions of Bacillus sp. LMB3902 strain were predicted using the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, Non-Redundant Protein Sequence Database, Swiss-Prot, and Pfam databases. The results showed that the genome size of Bacillus sp. LMB3902 was 4.279.557 bp, with an average GC content of 46%. The genome contained 4.760 predicted genes, including 8 rRNAs, 78 tRNAs, and 24 sRNAs. A total of 235 protease genes were annotated including 50 proteases with transmembrane helix structures and eight secreted proteases with signal peptides. Additionally, the majority of secondary metabolites found by antiSMASH platform showed low similarity to identified natural products, such as fengicin (53%), lichenysin (57%), and surfactin (34%), suggesting that this strain may encode for novel uncharacterized natural products which can be useful for biotechnological applications. This study is the first report that describes the complete genome sequence, taxono-genomics, and gene annotation as well as protease production of the Bacillus genus in this hydrothermal vent.
Collapse
Affiliation(s)
- Yasmina Boukeroui
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro Interdisciplinar de Química E Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 , A Coruña, Spain
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro Interdisciplinar de Química E Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 , A Coruña, Spain
| | - Mounia Arab
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, 16000, Algiers, Algeria
| | - Nadia Aissaoui
- Laboratory of Sustainable Management of Natural Resources in Arid and Semi Arid Areas (GDRN), Institute of Sciences, University Center of Naâma, 45000, Naâma, Algeria
| | - Fatima Nas
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Amina Nour Elhouda Saibi
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Nihel Klouche Khelil
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria.
- Laboratory of Experimental Surgery, Dental Surgery Department, Medical Faculty, University of Tlemcen, 13000, Tlemcen, Algeria.
| |
Collapse
|
2
|
Zada S, Khan M, Sajjad W, Rafiq M, Sajjad W, Su Z. Isolation and characterization of a cold-active, detergent-stable protease from Serratia sp. TGS1. J Basic Microbiol 2023; 63:1165-1176. [PMID: 37469200 DOI: 10.1002/jobm.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Psychrophiles are cold-adapted microorganisms living in cold regions and are known to generate cold-active enzymes such as proteases, lipases, and peptidases. These types of enzymes are a major part of the market of the food and textile sector. This study aimed to isolate and characterize the cold-active and detergent-stable, extracellular protease from psychotrophic bacteria Serratia sp. TGS1 (OQ654005). Protease was purified by gel permeation chromatography using Sephadex G-75. The specific activity of the purified protease was 250 U/mg at 15°C, with a purification fold of 5.68 and a percentage yield of 60%. The cold active protease was stable within a temperature range of 5-30°C and a pH range of 6-10. Ca+2 and Mg+2 enhanced its activity while chelators like ethylenediaminetetraacetic acid inhibited cold active protease, showing it as metalloprotease in nature. The enzyme was sensitive to Cu+2 , Zn+2 , and Hg+2 , and the proteolytic activity decreased upon treatment with heavy metals. The molecular weight of the protease was estimated to be 47 kDa using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Proteins within a specific range of molecular weight possess desirable properties for industrial enzyme use. By working on a specific range, the researchers intended to examine an enzyme to examine its specific characteristics. The purified protease showed high stability to detergents like SDS, Tween 20, Tween 60, and Triton X. The maximum velocity Vmax and Km values were 59.90 mg/min/mL and 1.53 mg/mL, respectively. The obtained protease exhibited an interesting activity at a broad range of pH (6-10) and stability at low temperatures (5-30°C) and detergents. Such enzymatic features of versatile and potent cold-active enzymes enhance their industrial applications to meet food, dairy, and laundry requirements.
Collapse
Affiliation(s)
- Sahib Zada
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Mohsin Khan
- Department of Biological Sciences, Ohio University Athens, Athens, Ohio, USA
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of IT, Quetta, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Zheng Su
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Potential of the Liquid Fermentation of Fishery Waste by Paenibacillus elgii for Metalloprotease Production. Polymers (Basel) 2022; 14:polym14132741. [PMID: 35808786 PMCID: PMC9268979 DOI: 10.3390/polym14132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
This study attempted to use fishery processing wastes to produce protease by Paenibacillus elgii TKU051. Of the tested wastes, tuna head powder (THP) was found to be the most effective carbon and nitrogen (C/N) source, and the optimal conditions were as follows: 0.811% THP, 0.052% K2HPO4, 0.073% MgSO4, initial pH of 8.96, incubation temperature of 31.4 °C, and incubation time of 3.092 days to achieve the maximum protease activity of 2.635 ± 0.124 U/mL. A protease with a molecular weight of 29 kDa was purified and biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed an amino acid sequence of STVHYSTR of P. elgii TKU051 protease, suggesting that the enzyme may belong to the M4 family of metalloproteases. The optimal activity of the enzyme was achieved at 60 °C and pH 8. P. elgii TKU051 protease was strongly inhibited by ethylenediaminetetraacetic acid and 1,10-phenanthroline, indicating its precise metalloprotease property. P. elgii TKU051 protease displayed the activity toward casein and raw fishery wastes such as tuna heads, tuna viscera, shrimp heads, and squid pens. Finally, the purified P. elgii TKU051 protease could improve the free-radical scavenging activity of fishery wastes. In short, P. elgii TKU051 has potential application in eco-friendly approaches to efficiently convert fishery wastes to metalloprotease.
Collapse
|
4
|
Xie J, Xu W, Zhang M, Qiu C, Liu J, Wisniewski M, Ou T, Zhou Z, Xiang Z. The impact of the endophytic bacterial community on mulberry tree growth in the Three Gorges Reservoir ecosystem, China. Environ Microbiol 2020; 23:1858-1875. [PMID: 32902116 DOI: 10.1111/1462-2920.15230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/29/2022]
Abstract
Plant-associated microbes influence plant performance and may also impact biotic and abiotic stress tolerance. The microbiome of mulberry trees planted for ecological restoration in the hydro-fluctuation belt of the Three Gorges Reservoir Region, China, exhibited distinct patterns of localization. The endosphere exhibited lower α-diversity relative to the rhizosphere, but was more closely related to host growth status, especially in stem tissues. Pantoea was the predominant bacterial genus inhabiting the stems of two well-growing plants, while sequences identified as Pseudomonas and Pantoea were abundant in poorly growing plants. The complexity of the endophytic community was more connected to growth status in well-growing plants than it was in poorly growing plants. Among 151 endophytes cultured from collected samples of mulberry, 64 exhibited plant growth-promoting (PGP) potential in vitro and the majority of beneficial taxa were harvested from well-growing plants. Collectively, the present study indicates that the recruitment of beneficial endophytes may contribute to mulberry fitness under abiotic stress, and it provides a foundation for the development of a new strategy in vegetation restoration.
Collapse
Affiliation(s)
- Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Weifang Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Changyu Qiu
- Promotion Station of Sericulture Technology, Guangxi Zhuang Autonomous Region, 530007, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China.,College of Life Science, Chongqing Normal University, Chongqing, 400047, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
5
|
Doan CT, Tran TN, Nguyen VB, Vo TPK, Nguyen AD, Wang SL. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int J Biol Macromol 2019; 131:706-715. [PMID: 30904526 DOI: 10.1016/j.ijbiomac.2019.03.117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/12/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
In this study, an extracellular protease, but no chitinolytic enzyme-producing strain, Brevibacillus parabrevis TKU046, has been isolated and analyzed for the deproteinization testing of shrimp waste by liquid fermentation. Deproteinization assays of shrimp waste with this microbe showed 95% protein removal after 4 days fermentation. The efficiency of chitin extraction by B. parabrevis TKU046 on wastes of three shrimp species were also investigated in which the highest deproteinization was found on cooked tiger shrimp shell. Infrared spectra (IR) of the obtained chitin displayed characteristic profiles for chitin. The culture supernatant released after fermentation greatly exhibited growth enhancing effect on Lactobacillus rhamnosus. In addition, B. parabrevis TKU046 protease was isolated and determined the characteristics. The molecular mass of B. parabrevis TKU046 protease was determined as 32 kDa and 34 kDa, respectively, by SDS-PAGE and HPLC. Overall, the findings provide strong support for the potential candidacy of this enzyme as an effective and eco-friendly alternative to the conventional chemicals used for the deproteinization of shrimp heads in the chitin processing industry, as well as the production of prebiotics to be used in the nutraceutical industry.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Thi Phuong Khanh Vo
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
6
|
González-Siso MI. Editorial for the Special Issue: Thermophiles and Thermozymes. Microorganisms 2019; 7:microorganisms7030062. [PMID: 30818747 PMCID: PMC6463253 DOI: 10.3390/microorganisms7030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
7
|
Gomri MA, El Moulouk Khaldi T, Kharroub K. Analysis of the diversity of aerobic, thermophilic endospore-forming bacteria in two Algerian hot springs using cultural and non-cultural methods. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
8
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|